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A computer program for fast and accurate numerical simulation
of solid-state NMR experiments is described. The program is
designed to emulate a NMR spectrometer by letiing the user
specify high-level NMR concepts such as spin systems, nuclear
spin interactions, RF irradiation, free precession, phase cycling,
coherence-order filtering, and implicit/explicit acquisition. These
elements are implemented using the Tcl scripting language to
ensure a minimum of programming overhead and direct interpre-
tation without the need for compilation, while maintaining the
flexibility of a full-featured programming language. Basicly, there
are no intrinsic limitations to the number of spins, types of inter-
actions, sample conditions (static or spinning, powders, uniaxially
oriented molecules, single crystals, or solutions), and the complex-
ity or number of spectral dimensions for the pulse sequence. The
applicability ranges from simple 1D experiments to advanced
multiple-pulse and multiple-dimensional experiments, series of
simulations, parameter scans, complex data manipulation/visual-
ization, and iterative fitting of simulated to experimental spectra.
A major effort has been devoted to optimizing the computation
speed using state-of-the-art algorithms for the time-consuming
parts of the calculations implemented in the core of the program
using the C programming language. Modification and mainte-
nance of the program are facilitated by releasing the program as
open source software (General Public License) currently at
hitp://nmr.imsb.au.dk. The general features of the program are
demonstrated by numerical simulations of various aspects for
REDOR, rotational resonance, DRAMA, DRAWS, HORROR,
C7, TEDOR, POST-C7, CW decoupling, TPPM, F-SLG, SLF,
SEMA-CP, PISEMA, RFDR, QCPMG-MAS, and MQ-MAS

experiments. @ 2000 Academic Press

INTRODUCTION

During the past decade solid-state NMR spectroscopy has
undergone a tremendous evolution from being based on rela-
tively simple one-dimensional pulse sequences to now involv-
ing a large repertoire of advanced multiple-pulse and multiple-
dimensional experiments designed to extract specific
information about the structure and dynamics of molecules in
the solid phase (/- 8). In many respects this evolution resem-
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bles the earlier and still strongly ongoing evolution of multi-
dimensional liquid-state NMR spectroscopy (9-11). In both
cases state-of-the-art experiments are constructed in a modular
fashion using pulse sequence building blocks accomplishing
certain coherence transfers or evolution under specific parts of
the internal Hamiltonian. One major difference, however, is
that solid-state NMR is influenced directly by anistropic nu-
clear spin interactions which on one hand complicate the
achievement of high-resolution spectra and on the other hand
may provide important information about structure and dynam-
ics. This dual aspect has motivated the design of advanced
pulse sequence elements which through decoupling and recou-
pling tailor the Hamiltonian to cause evolution under the
specific interaction(s) probing the desired structural infor-
mation while efficiently suppressing undesired interactions.
Based on analytical evaluation of the perturbed Hamiltonian
(1, 2, 4, 6, 12--15) and numerical simulations, a large num-
ber of experiments have been constructed which, via dipolar
coupling, anisotropic chemical shielding, and quadrupolar
coupling interactions, provide information about local mo-
lecular structure and dynamics in terms of the electronic/
nuclear coordination environment, internuclear distances,
bonding angles, and models for motional processes.

Often, the internal Hamiltonian in solid-state NMR contains
several orientation-dependent terms with amplitudes compara-
ble to or larger than the amplitude of the external manipulation
by RF irradiation and sample spinning. This may be the case
for desired as well as undesired terms of the Hamiltonian,
implying that accurate determination of structural parameters
from the desired terms as well as evaluation of the multiple-
pulse building blocks providing suppression of undesired terms
very often depend on the ability to numerically simulate the
spin dynamics of the actual NMR experiment. This applies, for
example, to the solid-state NMR experiments for which dipolar
recoupling (e.g., rotational resonance (/6, 17), REDOR (18),
DRAMA (19), DRAWS (20), RFDR (21), RIL (22), HORROR
(23), BABA (24), C7 (25, 26), RFDRCP (27)), multiple-pulse
homo- or heteronuclear decoupling (e.g., BR-24 (28), F-SLG
(29), MSHOT-3 (30), TPPM (31)), cross-polarization (32, 33),
QCPMG-MAS (34), or MQ-MAS (35) pulse sequences are
indispensable building blocks. Thus, considering the very large
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number of advanced experiments already available, the large
number of possible combinations between these, and the rap-
idly increasing number of new experimental procedures pre-
sented every year, there is a substantial need for a general and
consistent simulation tool to support experiment design, user-
specific method implementation, and evaluation of spectral
data. This need is reinforced by the fact that most state-of-the-
art experiments are simulated using custom-made programs
tailored to the specific pulse sequences and typically not ac-
cessible to or applicable for the general user. The shortcomings
of this currently prevailing approach are apparent. It requires
redundant work not only for the involved group but also for
other groups implementing the new techniques and does not
encourage one to create programs usable or understandable by
others. Obviously, a far better solution would be to have a
general-purpose program available for simulation of solid-state
NMR experiments. General programs of this sort, for example,
ANTIOPE (36) and the more general GAMMA simulation
environment (37), are available to the NMR community, al-
though to the best of our knowledge so far none of these
programs has specialized in time-efficient simulations within
modern solid-state NMR spectroscopy. We should note that
highly specialized programs such as STARS (38, 39) and
QUASAR (40), allowing simulation and iterative fitting of
single-pulse solid-state NMR spectra for spin-1/2 or half-inte-
ger quadrupolar nuclei, are available as integral parts in com-
mercial NMR software.

In this paper we present a general simulation program for
solid-state NMR spectroscopy (SIMPSON) which is designed
to work as a “computer spectrometer.” The primary aim has
been to design a program which is relatively easy to use,
transparent, and still maintains the flexibility to allow simula-
tion of virtually all types of NMR experiments. With the major
focus being solid-state NMR, the program has been optimized
for fast calculation of multiple-pulse experiments for rotating
powder samples, which generally is considered quite demand-
ing. We note that the program obviously may be used equally
well for static powders, single crystals, oriented samples, and
liquid-state NMR experiments. The user interface to the pro-
gram is the Tcl scripting language (41, 42), being well-suited
to provide the necessary high-level NMR functionality in a
transparent form. This covers definition and operation of the
basic elements of a NMR experiment (e.g., the spin system,
nuclear spin interactions, RF irradiation, frequency switching,
coherence-order filtering, free precession, acquisition, etc.) as
well as controlling experimental parameters, processing of the
experiment, and functions for the data processing. Encapsulat-
ing all mathematical and spin-quantum-mechanical calcula-
tions at this level of abstraction serves to minimize the content
of the input file without sacrificing the functionality of the
simulation. Within the proposed simulation environment, it is
straightforward to scale the functionality from the most simple
simulation of one-dimensional spectra specified by only a few
lines of code to coherence transfer functions for advanced
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pulse sequence elements, scans over parameters describing the
internal Hamiltonian, or the experimental manipulations, mul-
tidimensional simulations, and iterative fitting of experimental
spectra. The program structure encourages the analysis of
important, albeit typically disregarded, effects from small cou-
plings to nearby spins, finite RF pulse irradiation, RF inhomo-
geneity, hardware-induced “hidden” delays, and phase cycling.
Thus, in combination with an extensive function library the
program is geared to be a tool to systematic experiment design,
examination of pulse sequences proposed in the literature,
testing pulse sequences on relevant spin systems prior to spec-
trometer implementation, and checking the consequences of
experimental imperfections during pulse sequence implemen-
tation and as a tool to extract structural parameters from
experimental spectra through least-squares iterative fitting. A
major effort has been to devoted to produce a user-friendly tool
which serves all elements of multiple-pulse solid-state NMR
simulations from the initial testing calculations, pulse sequence
implementation, iterative fitting of experimental spectra, and
advanced data processing to interactive viewing and manipu-
lation of data.

THEORY

In this section the theory relevant for simulation of solid-
state NMR spectra is briefly reviewed. This provides the reader
with the basic symbols, definitions, and conventions used for
the description of the Hamiltonian as well as the transforma-
tions employed in spin and real space to define the actual NMR
experiment. To ensure general applicability the theory is de-
scribed in relation to solid-state NMR on rotating powders.
Other cases, including static powders, single crystals, uniaxi-
ally oriented molecules, and liquids, are easily handled as
special cases to this. To avoid an unacceptably long descrip-
tion, we refrain from going into details with respect to the
numerically important aspects of powder averaging, time and
spatial symmetry relations, numerical integration of the spin
dynamics, etc., but rather make extensive reference to already
published material on these aspects.

The simulation of a NMR experiment essentially amounts of
anumerical evaluation of the Liouville-von Neumann equation
of motion

d
- p(0) = —i[H(), p(1)], [1]

where p(7) is the reduced density matrix representing the state
of the spin system and H(?) the time-dependent Hamiltonian
describing the relevant nuclear spin interactions and the exter-
nal operations. For simplicity we have presently disregarded
effects from relaxation and other dissipative processes in the
theory as well as in the simulation software described in this
paper. Thus, the formal solution to Eq. [1] may be written
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p(1) = U(t, 0)p(0)U'(2, 0), (2]

where p(0) is the density operator at thermal equilibrium (or a
density operator resulting from a given preparation sequence)
and U(¢, 0) is the unitary propagator (i.e., the exponential
operator) responsible for the spin dynamics in the period from
0 to ¢. U(z, 0) is related to the Hamiltonian according to

U(t, 0) = T exp! —i ftH(t’)dt’ , [3]

[

with 7 being the Dyson time-ordering operator relevant for
Hamiltonians containing noncommuting components. Al-
though a large number of advanced numerical integration
methods (43) in principle may be applied to derive U(z, 0), it
typically proves most efficient numerically to approximate the
integral by a simple time-ordered product

n-1

H exp{—iH(jAt)Ar}, [4]

j=0

Ut 0) =

where # is the number of infinitesimal time intervals Az over
each of which the Hamiltonian may be considered time-inde-
pendent and which overall span the full period from 0 to ¢ =
nAt. For each time interval the exponentiation is accomplished
by diagonalization of the matrix representation for the Hamil-
tonian. To ensure fast convergence and to focus on the inter-
actions of specific interest these operations are usually per-
formed in an appropriate interaction frame.

In the most typical cases, the Hamiltonian is described by
the high-field truncated components in the Zeeman interaction
frame. For a spin system consisting of # spins /, being of the
same or different spin species, the Hamiltonian takes the form

H=Hpz+ Hes + H;+ Hy + Hg, [5]

where
Hye = 2 |oke(D)](Icos &, + Isin ¢,) [6]
Hes = 2 wcso ()1, 7

- 1
H;= 2 —of ) =11
ij 3 ’

+ wjmmo( ) /’ (311 jz I,) [8]
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+ wo (Do (417 — 817 — 1)1}, [10]
with i, j specifying the involved spins. The various terms
represent contributions from ¢;-phase RF irradiation with an
angular nutation frequency of wi: = —v.Bgr (RF), chemical
shift (CS), indirect spin—spin coupling (.J), dipole—dipole cou-
pling (D), and quadrupolar coupling (Q). We note that the RF
Hamiltonian in Eq. [6] in accord with common practice em-
ploys the magnitude of the RF nutation frequency with the
pulse phases ¢; adopting potential dependence on the sign of
the gyromagnetic ratio y; (9, 44). The first and second terms in
Eq. [8] describe scalar (J,) and anisotropic (J ) J coupling,
respectively. Likewise, the first term in Eq. [10] represents
first-order quadrupolar coupling while the last term includes
the secular components for the second-order quadrupolar cou-
pling. We note that for a coupling between nuclei of different
spin species the operator product I, - I, is truncated to /,./,..
Finally, it should be clearly stated that the Hamiltonian by no
means is restricted to the elements in Eqs. [6]-[10]. Using the
same formalism, it is straightforward to formulate, for exam-
ple, second-order cross-terms between the dipolar and quadru-
polar couplings.

For the various internal Hamiltonians H, with A = CS, J,,
Jaiso» D, and Q, the frequency coefficients depend on some
fundamental constants as well as time and spatial (i.e., orien-
tation dependent) functions which in the present formulation
are of rank 0 and 2 for isotropic and anisotropic parts of the
interactions, respectively. Overall these dependencies may
conveniently be expressed in terms of a Fourier expansion,

w)\,m'(t): E wg\m[?]

m=-2

imwet
s

[11]

where w,/27r is the spin rate and the Fourier coefficients are
/\
(m)  — _
(x))\ m' wlsosm 0 + wamso{DO m(Q R) \/’
X [D (}%,7171(92\%) + D<2%)Am(Q R)]} 7171 am' (BRL);
[12]

where 8, is a standard Kronecker delta and the constants
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TABLE 1

Constants Relevant for the Fourier Series Parametrization of the
Internal Part of the Nuclear Spin Hamiltonian (see Text)’

A A A

A Spins Wi Oariso n
CS i wli)axiso T W wll)sémso 7'{:5
D ij 0 V6 b, 0
S iJj —27V3 JL, 0 0
T iJj 0 27V6 Jii n¥
Q i 0 2mV6 Ch/(4121, — 1)) %

“Given in angular frequency units. The isotropic value, anisotropy, and
asymmetry parameter for the chemical shift interaction are related to the
principal elements of the shift tensor according to 8., = 1 (8, + &,, + &.),
Siniso = Ot — 8, and mis = (8], — 8.)/8.,, respectively, with the principal
elements 8}, = 85, = 8, labeled and ordered according to }8' - 8fm| = ‘8,’“
— 8| = [8], — 8i,). We note that conversion to the chemical shielding
convention simply amounts to replacing all 8’s by o”s (using the ordering o},
< o), = o) and reverting the sign of o, and o'y, The i-spin Larmor
frequency is defined as w) = —v,B,, where v, is the gyromagnetic ratio and
B, the flux density of the static magnetic field. w,,, is an optional rotating frame
reference frequency. The dipolar coupling constant is defined as b; =
—v,7,iofi/(r}4ar), where r; is the internuclear distance (SI units). The
quadrupolar coupling constant is defined as C{, = (e°Qq)/h. I, denotes the
spin-quantum number for spin i.

specifying the isotropic (w%,) and anisotropic (wh., n") con-
tributions to the Fourier coefficients are listed in Table 1 for the
various interactions.

The orientation dependence for the anisotropic interactions
is expressed in terms of second-rank Wigner (D) and re-
duced Wigner (d®) rotation matrices (2, 3). For a given inter-
action A these matrices describe coordinate transformations
from the principal-axis frame (P") to the laboratory-fixed
frame (L) where the experiment is performed. The transfor-
mations relevant for rotating powder experiments additionally
involve a crystal-fixed frame (C), representing a common
frame of reference in the presence of several interaction ten-
sors, as well as a rotor-fixed frame (R). The various frames are
illustrated in Fig. 1 with the axes of the ORTEP-type repre-
sentation designating the three principal elements for an aniso-
tropic interaction tensor as described by Mehring (2). The
Euler angles relating two frames X and Y are denoted 0}y, =
{a%y, Bir, Yxr}. Thus, the frames P and R are related by

2

Dl(r%’).m(‘()' ;\’R) = E D(z)

m',m”(Q;\’C)D/(r%”).m(QCR)’ [13]

m'=—2

while R is related to L by a Wigner rotation using the Euler
angles ay, = w,t (included in Eq. [11]) and B, (often set to
the magic angle, B,, = tan™' \ﬁ, while ., may arbitrarily be
set to zero within the high-field approximation. The angles
describe the orientation of the individual crystallite relative
to R.

The spin parts of the interactions are numerically manipu-
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lated by operation on their matrix representations. For a single
spin 7 the matrix representation is readily established using the
well-known relations

[14]
[15]

(m,|11|m> = \/I(I+ 1) - m(m £ 1) 8ln',intl
(m'|L

m) = m8m’,ma

with the step operators related to the Cartesian operators as
I. =1, *il, while I, is related to the polarization operators
as Iy5 = 5(1 +/— 21,) with 1 being the unity operator. The
matrix representation for a given operator O contains (2/ +
1)? elements @ = (I — k + 1|Q|I — [ + 1), where k and
[ denote the row and column positions, respectively. For a spin
system consisting of # nuclei, the matrix representation for a
given I,, spin operator for the nucleus i is described by the
direct products of unit operators and the relevant single-spin
operator /,, i.e.,

I,=1,® ...1, ® I, ® 1,,;, ® ...1,. [16]
We note that Eq. [16] implies matrix representations for which
the Zeeman product basis functions for, ¢.g., an ISR three-spin-
1/2 system are ordered as |aaa), |aaB), |aBa), |aBB),
|Baay), . . . etc., with |a) = |1/2), |B) = |—1/2), and the spins
ordered I, S, R.

Allowing for the detection of signals corresponding to her-
mitian as well as nonhermitian operators (the latter being
relevant for quadrature detection and experiments using pulsed
field gradients), the NMR response signal for a crystallite
characterized by the orientation ()., is generally described by
the projection or “expectation value” for the transposed and
conjugated detection operator (QL,):

s(t; Qer) = (Qladp(t; Q)
= Tr{ Quup(t; Qcr)}s

[17]
(18]
typically sampled equidistantly with respect to time, i.e., t =

mAt, m = 0, 1,..., n — 1, where n is the number of
sampling points. In the case of a powder sample, the signal

FIG. 1.
interaction tensor in its principal-axis system (P*), a crystallite-fixed coordi-
nate system (C), the rotor-fixed coordinate system (R), and the laboratory-
fixed coordinate system (L) along with the Euler angles Qyy = {axy, By
vxv} describing transformation between the various frames X and Y.

ORTEP-type representation of a spatial second-rank anisotropic
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needs to be averaged over all uniformly distributed powder
angles €., according to

_ 1 2ar m ] 2
5(0) = WJ dOlCRj dBcxsin(Bcr) J dycrs(t; Qcg),
0 0 0

[19]

where we for the sake of generality assumed averaging over the
full sphere. We note that in numerous cases the intrinsic
symmetry of the orientation dependence allows reduction of
the averaging to one-half or one-quarter of the sphere (39 ,45).
For numerical simulations this integral is conveniently approx-
imated by the discrete sum

N M
500 = 3 T s(t; ake, Bhe vid) 75, [20]

k=1 I=1

where the averaging is split into M angles L, with contribu-
tions from N pairs of a &, and B, powder angles weighted by
w, using the normalization 2,_, w, = 1.

Depending on the actual solid-state NMR experiment to be
simulated, several options exist for the powder averaging. For
efficient o and B¢ averaging, it is generally recommendable
to use averaging schemes providing the most uniform (and
thereby equally weighted) distribution of crystallite orienta-
tions over the unit sphere. This may be accomplished using
angle/weight sets derived using the methods of Zaremba, Con-
roy, and Cheng et al. (46—48) or the more efficient REPUL-
SION (49) or Lebedev (45) powder averaging schemes. In
cases of wide powder patterns, such as static or magic-angle-
spinning (MAS) powder patterns induced by first- or second-
order quadrupolar coupling interactions, it may be recommend-
able to support this powder averaging by interpolation (39)
using the recipe of Alderman et al. (50). For nonspinning
samples the signal is invariant to the vy, crystallite angle
which accordingly can be arbitrarily set to zero provided
Qr = {0, 0, 0}. For rotating powders, it is often possible to
exploit the symmetric time-dependence of the Hamiltonian to
improve the efficiency of the calculations (57). In particular for
appropriately rotor synchronized pulse sequences, it has
proven useful to consider these symmetries in combination
with the time—translation relationship between 7., and the
sample-rotation angle w. as recently described by several
authors (52—54). We note that, under certain circumstances, it
may be even more efficient to systematically reuse other com-
binations of propagators reflecting certain combinations of y,
and wt (55). Finally, we should briefly address attention to a
number of additional elements used to speed up the simula-
tions: (i) for diagonal Hamiltonians (i.e., Hamiltonians without
mutually noncommuting elements) the integration in Eq. [3] is
conducted using analytical solutions, (ii) since the internal
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Hamiltonian commutes with the Zeeman operator(s), evolution
under pulses with phase ¢, # 0 is most efficiently accom-
plished by calculating the propagator for a pulse with phase
¢; = 0 (i.e., H is real) followed by the appropriate z rotation
(26), and (iii) a particularly efficient variant of y-COMPUTE is
applied when the start and detect operators fulfill the relation

p(O) = %(Qde! + Q;et) (54)
SIMULATION ENVIRONMENT

While the Hamiltonians and transformations described in the
previous section through generality allow for the description of
essentially all types of NMR experiments, they do not offer a
simple framework for efficient implementation and fast simu-
lation of advanced solid-state NMR experiments. For this
purpose, it is essential to establish a user-friendly interface
allowing the fundamental definitions and the transformations in
spin and real space to be controlled with a minimum of
instructions/commands, each requiring as little information as
possible. This should be accomplished while maintaining the
flexibility as allowed at the level of the Hamiltonians. Thus,
with the specific aim of simulating practical solid-state NMR
experiments, it is desirable to perform simple operations at the
same level of abstraction as on a flexible computer interface to
a NMR spectrometer. In this case all spin and spatial depen-
dencies for the internal part of the Hamiltonian are provided by
the sample itself, leaving only the exterr:al manipulations to be
controlled by the experimentator. Obviously, in numerical sim-
ulations it is necessary to control both parts of the Hamiltonian,
but it appears intuitively that the optimum interface for a
simulation program should allow for separate control of these.
For example, this would enable fast implementation of pulse
sequences and the establishment of pulse sequence libraries.

Considering the practical implementation, the flow of the
calculations, and the data processing, we propose a user
interface containing four sections. These include a section
spinsys for definition of the internal Hamiltonian in terms of
spin system and nuclear spin interactions, a section par for
definition of the global experimental parameters (e.g., crystal-
lite orientations, sample spinning, operators for the initial spin
state and detection), a section pulseq for definition of the
pulse sequence, and finally a section main to control process-
ing of the pulse sequence, storage of data, and data processing.
Obviously, this interface is intimately related to the theory
given in the previous section as well as to supplementary
software for data manipulation, visualization, and analysis. The
overall structure of the simulation environment is illustrated
schematically in Fig. 2.

With the aim of specifying the necessary information in a
flexible, transparent, and user-friendly manner, the user inter-
face to the program based on the Tcl scripting language
(41, 42). Tcl is ideally suited to this purpose as it (i) is easier
to learn than C and similar high-level programming languages
(no type checking, complex data types, or variable declara-
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THEORY

SIMPSON

Scripting interface (Tcl)

Experimental
parameters
par

Spin system setup
spinsys

Process control
main

Pulse-sequence
pulseq

User defined Tcl functions

£

A 4

Core program (C)

Calculation of spin dynamics

Spin system  Pulse sequence

Internal Hamiltonian

DATA MANIPULATION

SIMPLOT
SIMFID SIMDPS

v RESULTS

Spectrum

Structural parameters

FIG. 2.

tions) and (ii) is an interpreted language as opposed to a
compiled language. The latter feature is convenient, for exam-
ple, in the process of implementing and modifying pulse se-
quences and experimental conditions for the experiment to be
simulated. This flexibility is achieved essentially without cost
as the input-file-interpreting overhead amounts to at maximum
a few percent of overall computation time. This is ascribed to
the fact that the vast majority of the calculations, especially the
time-consuming matrix manipulations, are performed by effi-
cient routines implemented in the C language running at native
speed. Tcl is an advanced scripting language that implements
all standard flow control structures (e.g., for, foreach,
and if) and data structures (e.g., lists, normal arrays, and
associative arrays) and contains a large set of library routines
(e.g., for string manipulation, file handling, and regular expres-
sions). Furthermore, the well-documented behavior and proved
correctness of the language implementation give Tcl an advan-
tage over custom-made interpreters. Obviously, these features
are important for the present version of the simulation pro-
gram, but even more so for future versions in the sense that
they offer straightforward capability to expand the functional-
ity by writing separate commands within the scripting lan-
guage. Indeed, this is how several of the commands available
in the present version of the program were implemented. If a
simulation requires a more specialized feature, an extension to
the core program may be necessary. In this case the elements
of basic functionality are isolated, implemented in the core
program and the associated commands used in the input file to
describe and control this specific element of the simulation.
This ensures general usability of the functions and minimizes
the tendency to collect a lot of functionality in incomprehen-
sible “black boxes.” The modular construction of the core

Flow diagram defining the SIMPSON simulation environment.

program renders it relatively easy to create such user-accessi-
ble commands.

The SIMPSON Tcl Input File

All high-level NMR operations required for numerical sim-
ulation of a particular solid-state NMR experiment are imple-
mented via one of the four sections of the Tcl scripting inter-
face (i.e., user input file) outlined in Fig. 2. The Hamiltonian as
well as the external manipulations/conditions is defined and
controlled using a number of general Tcl commands and pa-
rameters applicable for the spinsys, par, and pulseq
sections of the input file. The most typical commands for these
sections are listed in Table 2 along with a description of their
function and control parameters.

The spinsys section. In the spinsys section, the spin
system is defined in terms of the various nuclear spin species
in play and the interactions associated with these. The RF
channels of the experiment and the nuclei relevant for the spin
system are defined via the channelsg and nucled declara-
tions, respectively, using the notation 13C, 15N, etc., for the
arguments. We note that the channels definition, although
intuitively relating more directly to the pulseq section, is
included in spinsys to ensure direct relation to the nuclear
spin species and unambiguous definition of the number and in
particular the assignment of the RF channels. Furthermore, this
prevents the pulse sequence from being tied to specific nuclei.
The various nuclear spin interactions (shift, dipole,
jcoupling, and quadrupole) are defined using a nota-
tion relating directly to the internal Hamiltonians in Egs.
[7}-[12] with all coefficients in frequency units (hertz) or ppm
and all angles in degrees. We should note that quadrupole
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TABLE 2
Elements of and Scripting Commands for the SIMPSON Input File®

Elements of the SIMPSON input file

spinsys (. . .} Spin system and interactions.
par (. . .} Global experiment parameters.
proc pulseq {} {. . .} Pulse sequence.

procmain {} {. . .} Processing control.

Declarations for the spinsys section

channels N, N, ... N,

nuclei Ny N, ... N,

shift i 8l loi2m|" 8wl 027" 0% apc Bre Vrc
dipole ij b,/2m apc Bre Vec

jecoupling ij S o 7IJ ape Brc Ve
quadrupole i ordert Col2m 1° ape Bre Vrc

Parameters/commands for the par section

spin_rate Sample spinning frequency, w/2m

np Number of sampling points.

ni Number of sampling points in the indirect dimension of 2D experiments.

sw Spectral width.

swl Spectral width for the indirect dimension.

crystal file Name of the powder averaging file containing the number N of orientations and ake, Bér, w, values on successive lines.

gamma_angles Number M of vy, angles. Set to 1 if spin_rate is zero. Defines the number of sampling points per rotor period when
method equals gcompute.

gamma_zero Constant value added to all vy values in the powder averaging. Specifies the vy, angle if only a single crystallite is used.

rotor_angle Angle between the rotor axis and the B, direction. If spin_rate is zero the default angle is zero, otherwise the magic angle.

method Chooses among direct, gammarep, and gcompute methods for the simulation.

start_operator p(0) defined as an expression using operators Iiae where a is x, y, z, p (+) or m (—), and i is the nucleus number or » to
denote the sum over all nuclei.’

detect_operator Detection operator Q.."

pulse_sequence Sets another name than pulseq for the pulse sequence.

proton frequency Absolute 'H Larmor frequency |wi/27] in hertz. Used for ppm to hertz convertion and for the second-order quadrupolar coupling.

verbose A row of flags that sets the level of information printed when running the simulation.

variable name Sets a user specific variable with a value that can be retrieved throughout the input file by declaring: $par(name).

Commands for the pulseq section.

pulse 8t |oge/27 ¢, |war/27| ¢s . ..

Extends the current propagator to include a pulse of duration 8¢, RF-field amplitude of w}/2, and phase ¢, on the channels numbered successively.
Alternatively the phase can be specified as x, y, —x, or —y corresponding to phases of 0, 90, 180, or 270 degrees, respectively.

pulseid &t |wg/27 ¢, |war2m &s . ..

Same as pulse but performs an ideal (i.e., infinitely strong and infinitely short) pulse. 8¢ and wge/27 have no physical meaning other than to specify the
flip-angle of the pulse. The internal time remains unchanged.

delay 8¢

Extends the current propagator to include a free precession period of duration 8¢. If the Hamiltonian is diagonal (i.e., no homonuclear spin—spin
couplings) the delay is calculated by analytical integration of the Hamiltonian.

offset wl2m wl/2m . ..

Invokes an offset of w27 Hz to the channels numbered successively. The offset for a channel is defined by the Hamiltonian wiy 3, I,., where j is
summed over the nuclei in the spin-system affected by pulses on the channel. The offset applies until reset using offset with zero-value arguments or
the pulse sequence is called again.

acq[nprop ][ ¢]

Propagates p(f) using the current propagator, collects a data point corresponding to Qg and resets the propagator to unity. The optional arguments » and
prop specifies the number of data points » to collect while evolving with propagator number prop. The optional argument ¢ specifies the receiver
phase (syntax as for pulse).

maxdt At

Maximum time step (A¢ in Eq. [4]) over which the Hamiltonian may be considered time independent. The computation time/accuracy of the simulation is

significantly affected by the choice of value for this parameter. Defaults to 1 us in case of sample spinning and infinity in the static case.
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store n
Stores the current propagator in memory slot number ». The current propagator is not reset.
reset [ 8¢ ]
Resets p(?) to the initial operator p(0) and the current propagator to the unity operator. Resets the current time and adds 8¢ us if specified.
prop u [ times |
Propagates p(¢) with the propagator saved in memory slot number #. Repeated multiple times if times is specified, skipped if ¢imes is zero, or
propagated once if times is omitted.
filter n
Propagates p(f) with the current propagator, after which the propagator is reset and elements in the density matrix are set to zero if the corresponding
element in matrix number #» (defined using matrix set) is zero.
select ...
Renders the next pulse (pulse or pulseid) selective toward the spins which numbers are given as argument.
turnoff int ...
Disables the effect of the specified interactions until the end of the pulse sequence or until they are reactivated by turnon. Interactions are named
int_n or int_n_m using names and numbers given in the spinsys section, or a1l if all interactions should be disabled.
turnon inf ...
Enables the specified interactions or all interactions if all is specified.
int getinteractions
Returns a list of lists each containing an interaction name (see turnoff) and 1 or 0 depending on whether it is enabled or disabled.
putmatrix matrix ?format?
Prints out a matrix returned by matrix get optionally in a format different from the standard format “%9.3g™.
matrix set fo from
Sets a matrix fo to the contents of a matrix created using the argument from described below. fo can either be an index in the internal array of matrices,
the start (start) or the detect (detect) operator.
matrix matrix get from
Returns a matrix (printed with putmat rix) based on the argument from which can be either the same as to described above or the Hamiltonian
(hamiltonian), current propagator (propagator), current density operator (density), an operator expression (operator expr) or for the

purpose of filtering (undesired elements set to zero) the specific total coherence orders (totalcoherence {. . .} with the list containing
coherences), coherence orders (coherence {({. . .} . . .} with each sublist containing coherence orders for each nuclei), the full matrix
(list {row row . . .} where each row is a list of elements being either re or {re im}), specific matrix elements (elements {{ij} ...}), or

all elements excluding specific matrix elements (notelements {{ij} ...}).

Commands for the main section

d fsimpson [ {{int_n_nam v} ...} ]

Starts a simulation and returns a data set d , optionally overriding specific values of the interactions given in the spinsys section. A value is named
int_n_nam or int_n_m_nam, where int is the interaction name from spinsys, » and/or m the numbers of the involved nuclei, and nam is iso,
aniso, eta, alpha, beta, or gamma.

fsave d file [ -format -binary -double ]

Saves the (possibly 2D) data set d to a file file using the SIMPSON data format in text, binary (-binary) single or double (- double) precision
format, or optionally in another format (-format) being (1) -xreim with rows of frequency/time, real and imaginary part of data, (2) -xyreim (2D
data) with rows of frequency/time (indirect dimension), frequency/time (direct dimension), real and imaginary part of data, with an empty line
separating succeeding fids, or (3) -gnu2d -binary in the binary 2D Gnuplot format (56).

fftd[ -inv ]
fft drp lp rpl Ipl [ -phsens ]

The first form performs a direct or inverse fast Fourier transformation of the data set d, while the second form performs a 2D transformation using
constant (rp) and linear (/p) phase correction in the direct and indirect (rp/ and /p/) dimensions. The optional argument -phsens assumes phase-
sensitive 2D data with succeeding pairs of fids corresponding to equal ¢, and 90° different phase.

fzerofill d npz [ niz ]

Zerofills the data set d up to a total of npz points, optionally zerofills the 2D data set up to a total of »iz points in the indirect dimension.
fphased[ -rp v-1p v -scale v -offset v]

Performs one or more of first- and second-order phasing vertical scaling, and offset on the data set d.
faddlb d b r [ Ib] ri[ phsens]]

Apodizes the data set d with a Gaussian/Lorentzian (ratio ») weighting function causing an extra linebroadening of /6 Hz, or optionally the 2D data set
with /b1 and r/ specifying the values for the indirect dimension. The optional argument -phsens assumes phase-sensitive 2D data.

fbe d order {{from to} ...} [ skip }

Baseline corrects the data set d by fitting every skip (default 1) data point of the baseline in the defined frequency ranges to a polynomial of order
order.

fnewnp d points

Changes the number of data points in the data set d. Intermediate points are interpolated using a cubic spline.

fsmooth d points order

Smoothing of the data set d to a given order order.
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peaks ffindpeaks d th sens [ from to ]
Finds all peaks in the data set d that are higher than ¢4 and spans at least sens data points (optionally restricted to searching inside a specific frequency
range) and returns a list of frequencies and peak heights.
areas fint d {{froml tol} {from2 to2}..}
Returns a list of integrated intensities (by summation) for the specified spectral regions in the data set d.
areas Tssbint d dny shift width )
Returns a list of integrated intensities (by summation) for equidistant spectral regions (separated by dny Hz, centered around skift Hz, and each having a
width of width) in the data set d.
d fdup s
Copies the data set s to a new dataset d.
fcopy ds
Copies the data set s into an existing data set d.
fadd d s
Adds the data sets s and d and saves the result in d.
fsub ds
Subtracts the data set s from d and saves the result in d.
frevd
Reverses the order of all data points in the data set d.
rms frms d1 d2 [ -re | -im ] [ {{from to}..} ]
Returns the normalized root-means-square deviation between the complex, real, or imaginary part of two data sets d7 and d2, optionally within specific
frequency ranges.
fextract d from to
Shrinks the data set d to the specified frequency range.
d fzero [ {{from to} ...} ]
Attributes zero intensity to frequency regions (or the full region) of the data set d.
areas Taddpeaks d cutoff {{frq intlbr} ...}
Adds a series of peaks to the data set d, each of which is specified by a frequency, intensity, additional linebroadening, and Gauss/Lorentz ratio. The
areas of the peaks are returned as a list. The cufoff parameter defines the minimum intensity calculated before it is truncated to zero.
fexpr d reexpr imexpr
Applies Tcl expressions to the real and imaginary part of each data point in the data set d. Valid variables are the real part of the complex data point
Sre, the imaginary part $im, and the point index $1i starting from one. These variables must be preceded with a backslash if a local variable (fac)
is used, e.g.,, fexpr $f [list \Sre*x$fac] {Sim+$i%1.23}.
vfindexdi[ re| im]
Returns the real and/or the imaginary part of the ith complex data point in a data set d.
fsetindex dire im
Sets the real and imaginary part of the ith complex data point in the data set d.
vixdi
Returns the frequency or time of a data point i depending on the type of the data set d.
d fload file
Loads the data set d from a file and returns a data descriptor.
funload [ d ]
Removes all or a specific data set d from the memory.
d fcreate -npv -swv|[ -ref v-niv-swlv-reflv-type v]
Creates and returns a descriptor to the new data set d with zero points and with specifications corresponding the arguments of which -np and - sw are
required and v for -type is either fid or spe.
vigetd[ ref|-refl| sw| -swl| np| ni]| -type]
Returns either the reference line, spectral width, number of complex data points, or type of data (fid or spe) from the data set d depending on the
argument.
fsetd[ refv reflv swv swlv typev]
Changes the specifications for the data set d following the syntax from fcreate.
fit array
Performs iterative fitting using parameters given in the array array as described in the text.
fplot2d d name ( -ppm | -ps ) [ scale ]
Creates a Postscript (- ps) or portable pixmap (- ppm) bitmap plot of a 2D data set d using conventional 2D plotting conventions, i.e., shift increasing
left and down, optionally vertically scaled with scale.
rip dip2dist N, N, b\,/27
Calculates the distance (in A) between the nuclei N, and N, based on the dipolar coupling constant b ,/2r.
b,/2m dist2dip N\ N, )y
Analogues to dip2dist but calculates the dipolar coupling constant in hertz from the distance r, (in A).
list csapar 8, 8y 8;;
Returns the isotropic shift, chemical shift anisotropy, and the asymmetry parameter assuming unordered principal elements (in hertz or ppm) as
arguments.
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list csaprinc 8 Sumio M

Returns the ordered principal elements 8., 8, and 8., given the isotropic shift, chemical shift anisotropy, and the asymmetry parameter (in hertz or

ppm) as arguments.
list isotopes
Returns a list with data for the spin isotopes available.
value gamma N

Returns the magnetogyric ratio of a nucleus N given in the unit 10'rad/(Ts).

value resfreq N [ |wy/2m7] ]

Returns the value of the absolute resonance frequency in hertz for at nucleus N assuming an absolute proton resonance frequency of 10° Hz (default) or

optionally |w/27| Hz,

Tcl language constructs

name arg arg ...
set var value

array(var)

{...}

\

Svar

[expr expression]

proc name {args} {body}

global var var ...

for {start} {test} {incr} {body}

if {test} {body} elseif {test} {body} else {test} {body}
[list e, e;...]

[lindex $/ist i]

Function call with arguments.

Sets a variable to a value.

A variable in an associative array.

Begin and end of a command block.
Continuation of a line.

Gets a value of a variable.

Evaluates a mathematical expression.

Definition of a user procedure.

Make variables visible outside the current block.
A for loop.

An if construct.

Creates a list with elements e;.

Returns element / from a list (counting from zero).

“ All values are in hertz, microseconds, and degrees if not specified otherwise. Arguments in square brackets are optional.
? The parameter can be given in ppm (& value) by appending a p to the value.
“ The order parameter for the quadrupolar interaction can be 1 or 2 corresponding to first and second order, respectively, according to Eq. [10].

“ For half-integer quadrupolar nuclei lic may be applied to excite and detect only the {1/2,

includes the quadrupolar coupling Hamiltonian up to order one
and two as specified by the argument order.

The par section. In the par section, the spinning
(spin_rate) and sampling (np, ni, sw, swl) condi-
tions are defined along with conditions for the powder
angles/averaging (crystal file, gamma_angles,
rotor_angle, method), the initial and final operators
(start_operator, detect_operator), the pulse se-
quence (pulse_sequence), the 'H Larmor frequency
(proton_frequency, relevant for second-order quadru-
pole coupling and shifts expressed in ppm), the informa-
tion flow from the program (verbose), and variables
(variable) to describe, e.g., the applied RF field strength
and rotor synchronization conditions. It should be noted that
parameters in the par section are set independently of the
pulse sequence. This facilitates comparison of the perfor-
mance for different pulse sequences and supports the cre-
ation of pulse sequence libraries.

The pulseq section. A large number of commands are
available for the pulseq section to provide flexibility to
simulate essentially all types of solid-state NMR experiments.
In addition to commands such as pulse, pulseid,
delay, offset, and acq describing finite RF pulses, ideal
RF pulses, free precession periods, catrier frequency offsets,

1/2} central transition.

and acqusition of data, this section may contain a number of
commands that have no direct counterpart on the spectrometer
but serve to optimize the simulations by reusing propagators,
emulating phase cycles, and simulating the effect of coherence-
order filtering pulse sequence elements. These include the
maxdt to adjust the integration intervals, the store com-
mand for saving propagators, reset for resetting, prop for
applying a previously saved propagator, the matrix set and
filter commands for coherence-order filtration, select for
restriction of the subsequent pulses to certain spins, and the
turnon and turnoff commands to activate and deactivate
parts of the Hamiltonian, respectively. In addition to this come
several commands to create and retrieve information about
matrices and interactions throughout the calculations. These
and similar commands are described in more detail in Table 2.
To offer the highest degree of flexibility, it is relevant to
mention that all commands may be entered chronologically as
they appear in the pulse sequence or may be controlled by
loops to allow for efficient implementation of repeating events
or scanning through various parameters. This is conveniently
accomplished using standard Tcl constructs among which the
most relevant are included at the bottom of Table 2. For a more
complete description we refer to textbooks on the Tcl language
(41, 42).
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The main section. With the internal Hamiltonian and the
external manipulations defined, the remaining part of the sim-
ulation concerns the experiment processing to conduct the
calculations and obtain the result in terms of 1D free-induction
decays (FIDs) or spectra for single or phase-cycled pulse
sequences, parameter scans, coherence-transfer efficiency
curves, simultaneous multiple simulations, 2D FIDs or spectra,
etc. This is accomplished in the main section of the input file.
For example, the simulation is started using the command
fsimpson which returns the data set resulting from the
SIMPSON calculation. The data set may be saved using the
command fsave typically being combined with fsimpson
as

fsave [fsimpson] S$par(name).fid [21]

where Spar (name) per default contains the name of the
input file. More illustrative examples of this type are given
in the next section. In addition to control of the pulse
sequence processing, it is desirable to have built-in options
for data processing, e.g., fast Fourier transformation (fft),
zero-filling (fzerofill), phasing and scaling (fphase),
apodization (faddlb), baseline correction (fbc), inter/
extrapolation (fnewnp), smoothing (fsmooth), peakfind-
ing (ffindpeaks), and integration of spectral regions
(fint) or sideband patterns (fssbint), as well as the
ability to duplicate (fdup. fcopy), add (fadd), subtract
(fsub), reverse (frev), evaluate the root-mean-square de-
viation between two data set (frms), extract regions of a
spectrum to a new dataset (fextract), zero regions of a
spectrum (fzero), add peaks to a spectrum (faddpeaks),
or otherwise manipulate (fexpr) the output of one or more
simulations. All of this and several other things may be
accomplished in the main section of the Tcl input file using
a variety of commands with the most typical listed in Table
2 along with a short specification of their arguments. For a
more complete description of the many available com-
mands, the reader is referred to the examples in the next
sections and Ref. (55). We note that most of the data
manipulation alternatively may be performed after the sim-
ulation using some of the supplementary tools described
below.

The SIMPSON Data Format and Data Exchange

Before proceeding to procedures for postprocessing of data,
it appears relevant to address the data format used in the
SIMPSON package (including the productivity tools described
below). For example, this is relevant for the import of exper-
imental spectra for simulation and iterative fitting using SIMP-
SON or for export of FIDs or spectra (one- and higher dimen-
sional) to other software packages for postprocessing or
plotting.
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The SIMPSON data format has the structure

SIMP

NP=n

SW=sw
REF=ref

[ NI=ni ]

[ SW1=swl ]

[ REFl=refl ]
[ FORMAT=format ]
[ PREC=prec ]
TYPE=type
DATA

re, im,

re, im,

re, im,
END

where n, sw, and ref represent the number of complex data
points, the spectral width (sw/2 is the Nyquist frequency for
the sampling), and a reference frequency in the directly sam-
pled dimension. For 2D spectra the optional parameters ni,
swl, and ref1 (default values 0) take finite values describing
the number of points, the spectral width, and a reference
frequency for the indirect dimension. In general, multidimen-
sional data sets are constructed by concatenating a series of 1D
data sets successively after each other in the data file. FORMAT
is an optional parameter specifying the data format to normal
ASCII TEXT (default) or BINARY format among which the
latter is convenient for large 2D data sets. Likewise, PREC is
an optional specification of the precision of the data being
either SINGLE (default) or DOUBLE for single or double
precision floating point representation, respectively. The binary
formatted numbers are located between the DATA and END key
words, Finally, TYPE specifies whether the data is represented
in the time ( FID) or the frequency (SPE) domain.

The output obtained by acq is typically given in the time
domain and the spectra are obtained through Fourier transfor-
mation. Using this notation, the complex intensity for the ith
time-domain data point corresponds to the time

(22]

while the similar data point in a spectrum corresponds to a
frequency of

frq. = SW(% - 0.5) + ref. [23]

For a given frequency the corresponding index of a data point
in a spectrum is found by
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rq; — re
i= Floor[N(fc]—f+ 0.5) + 1.5],

Sw

[24]

where Floor is a function that rounds its argument down to the
nearest integer value.

To maintain consistency with common practice on commer-
cial NMR spectrometers the chemical shift or deshielding (5)
convention is employed consistently all way from the theory
via the SIMPSON input files to the data or spectra resulting
from the simulation. In the spectra this implies an axis with the
chemical shifts increasing from right to left in opposite direc-
tion to the chemical shielding. In this representation the least
shielded and thereby most deshielded tensor element 8, is
located to the left in the spectrum using the ordering 8,, =
8, = 8i. Similarly following common practice, the same
direction applies to the frequency scale obtained upon multi-
plication of the ppm value shifts by the absolute value of the
Larmor frequency (i.e., |wo/27r]). This choice (instead of the
more correct scaling by wy/27) facilitates comparison of ex-
perimental and simulated spectra although it inevitably causes
an unforturate confusion with respect to the signs of nuclear
spin interactions and their spectral representation as discussed
in detail by Levitt (44).

To avoid unnecessary contributions to this confusion and
maintain clarity of the inner working of SIMPSON in this
respect, the following conventions apply: (i) Both 8 and fre-
quency scales increases from right to left, (ii) chemical shift
parameters should be entered as ppm values or as frequencies
obtained by multiplication of these by |w/2], (iii) dipolar and
J couplings as well as frequency offsets should be entered with
correct sign under consideration of potential influence for y’s,
(iv) upon knowledge of the absolute proton (i.e., spectrometer)
frequency and the nuclei in play SIMPSON produces the
correctly signed Hamiltonian (according to Eqs. [S]-{10]), and
(v) SIMPSON per default complex conjugates the acquired
data when y > 0 for the detect nucleus to obtain correct
representation on the chosen frequency/ppm scale. To demon-
strate the consequences of this default procedure on the ap-
pearance of the simulated spectra, Fig. 3 contains representa-
tive static powder spectra influenced by anisotropic chemical
shift and second-order quadrupolar coupling. It is emphasized
at this point that the automatic conjugation, which is practical
to avoid confusing reversion of the spectra for -y < 0 nuclei but
may cause phase confusion for parameters scans, may be
overruled using the parameter conjugate_fid in the par
section of the input file. Furthermore, we note that any kind of
axis or data-ordering reversal alternatively may be invoked
using the frev command prior to plotting with SIMPLOT or
using the Reverse axis and Reverse data options in
SIMPLOT (vide infra). For example, this may be used to
reproduce spectra on the chemical shielding (o) scale, which
apart from an appropriate reference point is related to the
deshielding scale by a sign reversal, i.e., 8, =

g, ef — Oiso»
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FIG. 3. Typical static-powder solid-state NMR spectra (jw,/27 = 100
MHz) for (a) anisotropic chemical shift using &,, = 50 ppm (Buol/2m =5
KHZ), 8.0 = 100 ppm (8,,is0| /277 = 10 kHz), and mes = 0.2 corresponding
to chemical shift principal elements 8,, = 150 ppm, &,, = 10 ppm, and &;; =
—10 ppm, (b) and second-order quadrupolar coupling characterized by /7 =
3/2, Cq = 1.0 MHz, mq = 0.2. We note that using the conventions described
in the text, the orientation of the spectra (in contrast to the signs of the chemical
shift and second-order quadrupolar coupling terms in the Hamiltonian) remain
independent on the sign of the gyromagnetic ratio 7y,.

where o, is a reference value and o, = oy + on + o3).
This reversal leads to a spectrum with the chemical shielding
increasing from left to right, i.e., with the most shielded tensor
element oy; to the right using the conventional ordering o, <
Oy = 03.

The SIMPLOT, SIMFID, and SIMDPS Productivity Tools

In order to form a self-standing simulation environment, the
SIMPSON simulation package contains a collection of produc-
tivity tools SIMPLOT, SIMFID, and SIMDPS, as indicated in
the flow diagram in Fig. 2. SIMPLOT is a graphical viewer for
display and manipulation of one or multiple 1D spectra, ac-
quisition data, or output from parameter scans. This viewer
allows for interactive (mouse controlled) data manipulations
such as zooming, phasing, scaling, and postscript plotting. We
note that the present version of the SIMPSON package does
not include an interactive viewer for display/manipulation of
two- or higher dimensional data. However, using an optional
program package, VnmrTools, provided along with the SIMP-
SON program, 2D data can be retrieved directly into the Varian
VNMR software.’ Alternatively, multidimensional data can be
accessed and converted to other formats (e.g., for GNUPLOT
(56)) using the fsave and findex commands. SIMFID is a
program which gives access to most of the SIMPSON main
section data manipulation commands through arguments on the
command line. This tool is useful for postprocessing of data
resulting from a SIMPSON simulation. SIMDPS is a pulse

® The present version contains only conversion tools for the VNMR data
format.
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sequence viewer allowing graphical visualization of the pulse
sequence implemented via the scripting language. This tool
proves convenient for testing of pulse sequence timings,
phases, and amplitudes. The various tools will be described in
more detail in the following sections addressing specific sim-
ulation examples.

Availability and Portability of the SIMPSON Package

Finally, it is relevant to address the availability and port-
ability of the SIMPSON simulation package in terms of
computer hardware and distribution. The SIMPSON, SIM-
PLOT, SIMFID, and SIMDPS programs are released on the
Internet as open source software (55) under the terms of the
GNU General Public License (57). Among other things, this
implies that any user can freely modify the source code as
long the full code is made available under the GNU General
Public License. For example, this enables the user to create
extensions, make ports to new platforms, find information
about the conventions and algorithms used, and correct
potential errors. The overall aim is to make the program
owned and maintained by the users.

Furthermore, precompiled and self-contained (i.e., no depen-
dencies on special external libraries) binary executables are
freely available for the most common operating systems (in-
cluding Linux/i386, Windows/i386, and the major Unix plat-
forms) and are easy to compile on other platforms due to the
portability of the C language and the Tcl language interpreter
(open source scitware). We note that the SIMPLOT program
uses the open source GTK widget set (58) and is currently
available only for Linux and Windows.

ELEMENTS OF THE INPUT FILE:
A TUTORIAL EXAMPLE

It appears from the previous section that SIMPSON is
based on a relatively large number of commands required to
offer the desired compromise among ease of use, transpar-
ency, and flexibility to simulate all types of NMR experi-
ments. In order to clarify the use of these commands and to
systematically illustrate the simple construction of the Tcl
input file, this section demonstrates and cxplains the input
file for a typical solid-state NMR experiment. To extend the
perspective beyond the specific example, the discussion
additionally addresses alternative typical options to the var-
ious commands. For the present purpose, we have chosen
the rotational-echo double resonance (REDOR) pulse se-
quence (/8) shown in Fig. 4a, which on one hand is a very
important solid-state NMR experiment and on the other
hand contains many typical pulse sequence elements with-
out being excessively complicated. To maintain appropriate
reference to the literature and to the known behavior of the
experiment, we reconstruct the "C-detected REDOR exper-
iment as originally presented by Gullion and Schaefer (/8)
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FIG. 4. (a) Timing scheme for the “C~"N REDOR pulse sequence as
typically implemented on the spectrometer. Shaded and open rectangles on the *C
and "N channels denote 7 pulses of phase x and y, respectively. (b) Pulse
sequences corresponding to the three first sampling points (black dots) as visual-
ized using SIMDPS with the REDOR input file given in the text with np changed
to 3. We note that all simulations ignore the 'H channel under the assumption of
ideal cross polarization and perfect 'H decoupling. (c) SIMPLOT view of dipolar
dephasing curves calculated for a powder of "C—~"N spin pairs with b¢/27 = 895
Hz (rey = 1.51 A), 85, = 10 ppm, 85, = 100 ppm, and & = 0.5 using REDOR
with w,/27 = 10 kHz and ideal RF pulses (upper curve), as well as finite RF pulse
irradiation with amplitudes of wgx/27 = 150 kHz (middle curve) and 50 kHz
(fower curve) on both RF channels.

for measurement of "C—"N dipolar couplings (and thereby
internuclear distances) under MAS conditions. In REDOR,
coherent averaging of the dipolar coupling interaction by
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MAS is interrupted by inserting a mr-pulse on the "N RF
channel for every half rotor period with the exception that
the pulse exactly in the middle of the evolution period is
replaced by a corresponding #-pulse on the "C RF channel
in order to refocus undesired effects from “C chemi-
calshielding. The difference between this experiment and a
corresponding experiment not using the N refocusing
pulses provides a direct measure for the dipolar coupling.

The redor. in Input File

With this primer, the first step to a SIMPSON simulation is
to implement the spectrometer RF channels, the spin system,
and the NMR interactions in the spinsys section of the input
file. This amounts to

spinsys {
channels 13C 15N

nucledi 136 15N
dipole 1 2 895 10 20 30
shift 1 10p 100p 0.5 50 20 10

}

where we for simplicity have disregarded the 'H to “C cross-
polarization sequence which for sensitivity reasons is part of the
experimental pulse sequence in Fig, 4a. The channels com-
mand establishes the *C and "N RF channels, while the nuclei
command line defines the *C-"N two-spin system. The affected
nuclei are ordered according to their appearance on the nucledi
line. We note that a 'H channel and one or more 'H nuclei
(including associated interactions) may easily be implemented in
the spinsys section to allow for simulation of the effect of cross
polarization. The relevant nuclear spin interactions are specified
using the dipole and shift command lines with the argu-
ments referring to the internal Hamiltonians in Egs. [7]-{9] ac-
cording to Table 2. This implies that the dipolar coupling should
be entered under appropriate consideration of the signs of the
gyromagnetic ratios in play (e.g., the dipolar coupling between
spins with positive (°C) and negative (°N) gyromagnetic ratios
should be positive). In the present example the isotropic chemical
shift and the chemical shift anisotropy are entered in ppm at the &
scale by appending the character p immediately after the value.
Using this information along with knowledge as to -y (via nu-
cledi) and the proton_frequency (entered in the par sec-
tion (vide infra)) SIMPSON automatically calculates the correct
chemical shift frequencies for the Hamiltonian. We note that the
shift parameters alternatively may be entered as hertz values
generated by scaling of the ppm values by the absolute value of
the relevant Larmor frequency. In this context it is relevant to note
that SIMPSON provides a number of simple tools to convert
between, e.g., internuclear distances and dipolar couplings, prin-
cipal shielding elements and isotropic/anisotropic/asymmetry pa-
rameters, lists of available isotopes. These commands, being help-
ful in setting up the spinsys section of the input file, may be
invoked directly by writing a simple SIMPSON input file con-
taining exclusively the main section with one or more of the lines
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proc main {} {
puts [dip2dist 15N 13C 970]
puts [dist2dip 15N 13C 1.5]
puts [csapar 30 60 200]
puts [csaprinc 50 100 0.2]
puts [join [isotopes] \n]

}

where distances are in Angstroms (A), dipolar couplings are in
hertz, and chemical shift principal elements are in ppm. Note
that this main example is not part of the proposed REDOR
input file.

Parameters defining general (global) physical conditions
such as sample rotation, crystallite orientations, and sampling
conditions are implemented in the par section of the input file.
In the present case this may take the form

par f
proton_frequency 400e6
spin_rate 10000

sW spin_rate/2.0
np 32
crystal_file rep320
gamma_angles 18
start_operator Ilx
detect_operator Ilp

verbose 1101

variable rf 150000

}

which, using the self-explanatory names, defines experimental
conditions using a 400-MHz spectrometer (wg/2m = —400
MHz), 10-kHz sample spinning at the magic angle (the default
value for rotor_angle is tan '(V2) in degrees), the spec-
tral width set to a half the rotor frequency corresponding to
sampling every second rotor period, 32 sampling points, pow-
der averaging using 320 pairs of acz, Ber crystallite angles
distributed according to the REPULSION scheme (49), and 18
equally spaced v angles. Since the requirements to the num-
ber of angles in the powder average may vary significantly for
different experiments (and typically need to be tested for
convergence), SIMPSON contains a large number of powder
files that may be straightforwardly invoked as alternatives to
rep320 (55). Obviously, these includes options for liquid-
state, single-crystal, and uniaxially oriented molecule condi-
tions. User-defined sets of crystallite angles can be used by
setting the crystal_file entry to the path of a text file
containing the number of angle pairs N, followed by N suc-
cessive lines each containing afr, B, and w, as given in Eq.
[20].

Three options, controlled by the method command in the
par file, can be chosen for the y.; averaging including
direct, gammarep, and gcompute corresponding to di-
rect calculation by chronological time integration, reuse (rep-
lication) of propagators for different y., angles, or y-COM-
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PUTE (51-55). The default method, used here by omitting the
method parameter in the par section, is the direct method.
The present simulation assumes the initial (start_opera-
tor) and final (detect_operator) operators to be T1x
and T1p, respectively. Using the specifications in spinsys
these correspond to I, and I, for “C. We note that the
start_operator often is set to the equilibrium polariza-
tion which, when applying to all spins, may be implemented in
shorthand notation as Inz, corresponding to 2/, /.. Speci-
fying the detect_operator as I1p ensures that the °C
magnetization is sampled by quadrature detection. We should
mention that in the case of second-order quadrupolar coupling
and chemical shift values entered in ppm, it is necessary to
specify that the absolute '"H Larmor frequency (in hertz) in the
par section using the proton_frequency parameter. Fi-
nally, a user-declared variable denoted rf is used to spec-
ify the absolute value of the RF field strength to 150 kHz. This
(and potential other) variable entered in the par section may
be accessed in the user procedures pulseq and main as
elements in the par array made visible by the global key
word. A parameter can be set using an expression containing
previously defined parameters, as is the case with calculation
of sw. For a more complete description we refer to Table 2.
Finally, we should mention the verbose function, which is a
set of bits specifying the output returned from the SIMPSON
simulation. In the present case the output represents the spin
system, progress during the calculation, and various informa-
tion concerning the simulation (J5).

In general, the pulse sequence is considered the most crucial
part of the simulation and indeed represents the most flexible
part of the simulation environment (together with main and
other Tcl procedures). The pulse sequence is defined through
the user-defined Tcl function pulseq being called for each
crystallite orientation. For the REDOR pulse sequence with
finite RF pulses this function may conveniently be written as
follows.

proc pulseq {} |
global par

maxdt 1.0

set t180
set tr2

[expr 0.5e6/3par(rf)]
[expr 0.5e6/$par(spin_rate)-$t180]

reset
delay
pulse
delay $tr2

pulse $tl180 0 x S$par{(rf) y
store 1

Str2
$t180 0 x S$par(rf) x

reset
acq

delay
pulse
delay

Str2
$t180 0 x Spar(rf) x
St2
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pulse $t180 Spar(rf) x 0 x
prop 1

store 2

acq

for {set i 2} {incr i} |

reset
prop 1
prop 2
prop 1
store 2
acqg

{81 < Spar(np)}

}

We note that a version corresponding to an ideal RF pulse may
be constructed simply by replacing pulse with pulseid and
avoiding substraction of t180 from tr2.

As an extremely important parameter, any pulse sequence
should contain a definition of the maximum time step over
which the Hamiltonian may be considered time independent.
This parameter, being relevant when the Hamiltonian contains
noncommuting elements, is controlled maxdt (microseconds)
corresponding to Az in Eq. [4]. At the same level as the number
of crystallites used for powder averaging, the value of maxdt
may act as a tradeoff between accuracy and speed of the
simulation and therefore must be considered carefully by run-
ning several simulations with different values. In most cases a
value of 1 us is adequate. Setting of typical timings also
belongs to the initialization, which in the present case is the
durations of a half rotor period tr2 and a 180° pulse £180
(both microseconds) being calculated by accessing parameters
from the par section. We note that the duration of a 7 pulse
is subtracted from the half rotor period to ensure rotor syn-
chronization of the refocusing periods.

In the implementation of any pulse sequence, it is relevant to
consider the flow of operations and identify repeating events.
The former topic concerns the inner working of the SIMPSON
calculations, while the latter addresses more specifically the
actual pulse sequence. Starting out with the generalities, it
applies to any simulation that evaluation of the spin dynamics
requires three internal variables to be changed throughout the
pulse sequence: the density matrix, the time, and the propaga-
tor. Thus, to any time up to the end of the experiment, the
current propagator may (under consideration of Dyson time
ordering) be updated by multiplication with the propagator for
the following time event and the time incremented appropri-
ately. This is accomplished using the pulse, pulseid, and
delay commands. To any time the current density matrix,
resulting from operation with the current propagator on the
initial density operator, may be obtained using the acquisition
acq command, which additionally provides the expectation/
projection value with respect to the detection operator (i.e., a
data point) and resets the current propagator. The current time
and the propagator are reset using the reset command. These
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statements immediately indicate the hierarchy of operations in
SIMPSON: first operations on the propagator level and later on
the density matrix level. This construction allows for efficient
reuse of propagators that to any time can be saved with the
store command and reused the desired number of times
using the prop command. For typical solid-state experiments,
systematic reuse of propagators may speed up the calculations
by several orders of magnitude. For nonspinning samples, the
time-independent Hamiltonian allows all propagators to be
reused without limitations and maxd+t is irrelevant. In the case
of sample spinning, the Hamiltonian is periodic with the rotor
period, implying that propagators calculated to a specific time
can be reused an integral number of rotor periods later pro-
vided that the pulse sequence fulfills the same periodicity. To
allow for sufficient flexibility, the propagator to an arbitrary
time within the pulse sequence can be calculated using the time
increment as argument to the reset command. The same is
possible during the data acquisition period provided that the
sampling is synchronized to an integral number or integer
fraction (1/R) of the rotor period. In the latter case R propa-
gators starting at different times need to be precalculated. Note
that the acq and filter commands cannot be stored as they
modify the density matrix. The program automatically checks
that the propagators are reused at the correct time.

The REDOR pulse sequence in Fig. 4a may conveniently be
described in terms of two repeating pulse sequence elements.
Before these are activated we reset the propagator and calculate
the first point corresponding to time ¢ = 0 using the acq
command. The first pulse sequence element is represented by a
rotor period with "N 7 pulses in the middle and at the end
(marked 1 in Fig. 4a). The two pulses alternate with x and y
phases, which is relevant for the spectrometer implementation
since it prevents accumulation of pulse rotation errors (e.g.,
induced by RF inhomogeneity) throughout the train of echo
pulses (59, 60). In fact, the utility of this modification may
easily be tested by slight misadjustment of the pulse flip angles
in the SIMPSON simulation. A more advanced and practically
even more relevant approach would be the XY-8 phase scheme
described by Gullion et al. (60). The propagator for the first
element is calculated and saved using store 1 for later
activation using prop 1. The second element (marked 2 in
Fig. 4a) is initially formed by a rotor period with a "N 7 pulse
in the middle and a "C 7 pulse in the end, followed by the
prop 1 pulse sequence element. Thus, prop 2 corresponds to
the central part of the REDOR pulse sequence while prop 1
corresponds to the bracketing rotor periods with "N ar pulses
alone. Using this setup, the second data point from the REDOR
experiment may be calculated using the acq command upon
generation of the propagator prop 1; prop 2; prop 1.
Now it is evident that all points of the REDOR experiment may
be calculated systematically using sequence elements of the
type prop 1; prop 2; prop 1, which upon calculation of
a data point is stored as the new prop 2 using store 2.
Upon subsequent bracketing by prop 1 propagators, we ob-
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tain the propagator relevant for calculation of the next data
point and so forth. This enables simple calculation of the
REDOR dephasing curve using a for loop construction as
implemented in the pulseq code of the present example. We
note that the reference spectrum for the REDOR experiment
may straightforwardly be generated by zeroing the RF ampli-
tude for the N refocusing pulses in prop 1 and prop 2 (not
shown).

This simple example illustrates two important points con-
cerning simulations within the SIMPSON environment. First,
in the setup of multiple-pulse NMR simulations it is important
to disentangle the pulse sequence in repeating events to ensure
a simple and short program structure as well as the fastest
possible calculations in terms of CPU time. In fact, program-
ming in this manner hardly differs from the way pulse se-
quences should be implemented on the spectrometer. Second,
it demonstrates that SIMPSON is sufficiently flexible that
essentially all programming structures using and reusing pulse
sequence building blocks are feasible.

The main section of the input file, which controls the
progress of the simulation, may take the following form.

proc main {} {
global par

set £ [fsimpson]
fsave $f $par (name).fid

J

The fsimpson command (evaluated by the brackets) per-
forms the simulation based on the information given in the
spinsys, par, and pulseq sections and returns a pointer
f to the resulting acquisition data. Using the fsave command
the data is saved to the file Spar (name) . fid with the exten-
sion . fid added to the basename of the input file. The resulting
time-domain signal may be plotted using the SIMPLOT pro-
gram either directly or upon Fourier transformation using
SIMFID. Alternatively, if desired, the Fourier transformation
may be accomplished within the main section of the input file
by appending

fzerofill Sf 16384
faddlb $f 100 O
£FE 1SiE

fsave $f S$par(name).spe -binary

to the main code. Specifically these commands invoke zero
filling of the FID to 16384 points, apodization using 100-Hz
Lorentzian line broadening, Fourier transformation of the re-
sulting FID, and saving the spectrum in a binary file with the
extension . spe.

The SIMPSON REDOR Simulation

The four Tcl code elements presented above form the input
file to SIMPSON which conveniently may be called
redor.in. Upon appropriate installation of the SIMPSON
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package (which merely involves copying the stand-alone pro-
grams to the desired directory), it is now straightforward to
conduct the simulation including pulse sequence testing, data
manipulation, and plotting. For convenience the processing is
illustrated as commands as one would type them into a typical
UNIX shell or DOS prompt environment. The first thing to do
is to test the pulse sequence using the SIMDPS command by

typing
simdps redor.in

which by a priori setting the number of sampling points (np) in
the input file to 3 leads to the postscript output shown in Fig.
4b. The output illustrates the first three sampling points by
solid dots on the “C channel along with the preceding pulse
sequences. The detailed output in terms of delay and pulse
timings as well as pulse phases provides a valuable test that the
pulse sequence is correctly implemented. SIMDPS has a num-
ber of optional settings described when the program is run
without arguments.

Upon testing the pulse sequence in the input file, the next
step is typically the SIMPSON calculation itself being invoked
as

simpson redor.in.

Unless specified otherwise in the main section of the input file
(using the data manipulation commands) the calculation results
in the time-domain output file redor . fid . The content of this
file may be viewed, manipulated, and plotted using the
SIMPLOT program

simplot redor.fid redor-ideal.fid redor-50kHz.fid

where we for the sake of illustration included dephasing curves
corresponding to REDOR pulse sequences with ideal RF
pulses as well as finite RF pulse irradiation with |wge/27] = 50
kHz on both channels. The screen view from SIMPLOT (Fig.
4c) may be exported (printed) to a postscript file (redor . ps)
which can be printed or further modified. We should mention
that, if required, it is obviously straightforward to simulate the
REDOR reference spectrum using SIMPSON and produce the
difference between this and the REDOR FID using the
SIMFID program, i.e.,

simfid redorref.fid redordiff.fid -~sub redor.fid.

SIMPSON Iterative Fitting

Largely the need for numerical simulations in solid-state
NMR spectroscopy may be divided into two classes, the first
concerning experiment design, evaluation, and implementa-
tion. The other concerns extraction of structural parameters
from experimental spectra. The latter not only requires the
capability of numerical simulation but also calls for efficient
procedures for least-squares iterative fitting of experimental
spectra to numerical spectra depending on the relevant struc-
tural parameters.
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Iterative fitting may be performed in the main section of the
input file and requires definition of a function (e.g.,
fit function) which returns the value to be minimized, typ-
ically the root-mean-square (rms) deviation. The fit routine
performs the minimization by passing the iteratively changed
function parameters given in the Spar (values) list to the
fitting function. Each element in the list contains a name, a
starting value, the step size, and 1 or 0 depending on whether
the variable is iteratively changed during the minimization.

Specifically addressing the REDOR example and assum-
ing that an experimental REDOR decay exists in a file
redorexp.fid, fitting of the data to the dipolar coupling, the
scaling, and the line broadening (exponential decay) may be
accomplished by replacing the main procedure in the REDOR
simulation given above with the fitting function (fitfunc-
tion)and main procedure shown below. The fitting function
extracts the parameters from the list val (containing elements
with the variable name, e.g., dipole_1_2_ aniso and
value) and feeds them to the fsimpson, fphase,
faddlb, and frms functions to accomplish the simulation,
scaling and apodization of the result, and calculation of the rms
deviation between the experimental and simulated data.

proc fitfunction {val} {
global par stop

[lindex Sval 0] 1]
[lindex Sval 1] 1]
[lindex Sval 2]

[lindex
[lindex

set scale
set 1b
set dipole

set sim [fsimpson [list S$dipole]]
fphase Ssim -scale $scale
faddlb $sim $1b O
set rms [frms $sim $par (exp)]
if {$rms < $par(bestrms)} |
set par(bestrms) S$Srms
fsave $sim $par (name) .fid
puts -nonewline “*”
}
funload $sim
puts “$par(iter) Srms Spar(bestrms) Sval”
if {$stop || $rms < S$par(maxrms) |
$par(iter) > Spar(maxiter)} {
exit
}
return $rms

}

proc main {} {

global par

set par (fitmethod) simplex

gset par(function) fitfunction

set par (exp) [fload redorexp.fid]
set par(bestrms) leb

set par (maxrms) 0.5

set par (maxiter) 1000
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set par{values)
{scale 1 0.1 1}
{1b 40 10 1}
{dipole_1_2_aniso 1200 50 L}
}
fit par
}

The main procedure sets the fitting method to Simplex (43),
sets the fitting function to be fit function, loads the exper-
imental data and saves the data descriptor in the variable
$par (exp) , initializes the best root-means-square value to
an unrealistic large number, and sets the initial function pa-
rameters for the minimization. For each parameter the latter
includes the name, the initial value, the initial step size, and a
number indicating whether the parameter is considered for
fitting (1) or not (0). Finally, the iterative fitting is performed
by calling the fit procedure with the array that holds the
variables guiding the minimization as argument. For each
iteration the fitfunction function is called, the function
parameters are extracted, and the simulation and comparison
with the experimental data are performed. If the current rms
value is less than the best rms value, the latter is updated, the
acquisition data are saved, and a star is printed on the output to
indicate that this is a better fit. After use, the simulated spec-
trum is removed from the memory (funload), the parameters
for the current fit are printed, and the program exits provided
that max i ter is reached, the rms value is below maxrms, or
the special variable $stop is one which happens when the
keyboard keys Ctrl and C are pressed simultaneously.

TYPICAL EXAMPLES OF SIMPSON SIMULATIONS

In this section we provide a series of examples demonstrat-
ing the capability of the SIMPSON environment for essentially
simulating all types of solid-state NMR experiments. The
examples, for which the SIMPSON input files are included in
the Appendix, are chosen to illustrate different typical aspects
of numerical simulations in state-of-the-art solid-state NMR.
Furthermore, by the selection of current methods which are
well-documented by experimental spectra and numerical sim-
ulations in the original literature, some of the examples given
below additionally serve to document the validity of the sim-
ulation procedures implemented in SIMPSON and the robust-
ness of these by applications in different contexts. The exam-
ples include rotational resonance, homonuclear dipolar
recoupling using DRAMA/DRAWS/HORROR/C7, hetero-
nuclear dipolar recoupling using TEDOR, dipolar decoupling
using CW or TPPM irradiation, separated-local-field (SLF)
experiments without or with FSLG/MSHOT-3 homonuclear
decoupling, and QCPMG-MAS experiments for sensitivity-
enhanced quadrupolar-echo NMR of half-integer quadrupolar
nuclei. The capability of parameter scans for experiment opti-
mization is demonstrated for heteronuclear coherence transfer
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FIG. 5. Rotational resonance type °C MAS NMR spectra for a “C-"C

two-spin system (powder sample) simulated using bco/2m = —1.5 kHg,

w/2m = 2 kHz, and different ratios n = |05’ — ww)/o, between the

isotropic chemical shift difference and the spinning frequency. The star (*)

indicates the position of wgy'/27r, while wy?/27r is constant zero.

based on POST-C7 “C-"N dipolar recoupling as well as
triple-quantum excitation in MQ-MAS experiments of quadru-
polar nuclei. The potential of using SIMPSON for generation
of advanced “waveforms” (i.e., simulation of RF irradiation
with complicated amplitude or phase modulation) is illustrated
for a phase-sweeped variant to the FSLG experiment. Finally,
we exemplify simulation of 2D spectra by calculation of 2D
PISEMA and RFDR homonuclear dipolar correlation spectra
for two- and five-spin systems, respectively. For more exam-
ples we refer to Ref. (55).

Example 1: Rotational Resonance Type Spectra for bcPc
Spin Pairs

Although simulation of standard single-pulse experiments
represents the most trivial task discussed in this paper, it is
worth noting that up to quite recently it has been considered
challenging just to simulate and iteratively fit such spectra for
homonuclear two- or three-spin systems. This is ascribed to the
presence of “homogeneous” interactions (67) which effectively
call for a quite time-consuming time-ordered integration of the
spin dynamics during sampling of the FID (17, 62). Several
breakthroughs, among which range efficient powder averaging
(45, 49) and exploitation of time-trarslational symmetries (52—
54), have greatly improved the conditions for such simulations
and their combination with iterative fitting for extraction of
accurate structural parameters. To illustrate the straightforward
performance of such simulations within the SIMPSON envi-
ronment, Fig. 5 shows a series of rotational resonance type of
spectra for a powder of “C-"C spin pairs calculated for
different combinations of isotropic chemical shifts and sample
spinning speeds. The SIMPSON input file required for this sort
of arrayed simulation and subsequent data processing only
amounts to a few lines of effective code as demonstrated in the
Appendix. We note that the acquisition of data under free
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precession conditions conveniently is accomplished implicitly
using y-COMPUTE which exploits the time-translational rela-
tionship between w. and yq and in the present example
automatically samples 4096 points equidistantly using
gamma_angles = 20 points per rotor period. Using 320
pairs of oz, Bcg REPULSION angles each spectrum required
6.1 s of CPU time on a Linux-controlled 450-MHz Pentium III
computer, which practically puts no limitations on the combi-
nation with powerful iterative fitting procedures. For compar-
ison, we note that a similar simulation for a three-spin system
(accomplished by just changing the spinsys part of the input
file) required 56.5 s of CPU time.

Example 2: Homonuclear Dipolar Recoupling Using
DRAMA, DRAWS, HORROR, and C7

The past decade has clearly demonstrated that recoupling of
homonuclear dipolar coupling interactions is by no means
restricted to the rotational resonance experiment with its at-
tractive and less attractive features. In the latter category be-
long practical difficulties for small isotropic chemical shift
differences, its intrinsic selectivity, and its sensitivity to chem-
ical shift anisotropy which may complicate extraction of infor-
mation about internuclear distances. These aspects have moti-
vated the design of a large series of experiments which in
addition to manipulations of the Hamiltonian in real space rely
on quenching of the dipolar averaging by multiple-pulse RF
manipulations in spin space. Although most of these experi-
ments are designed for the same purpose, namely selective
recoupling of homonuclear dipolar couplings, they are associ-
ated with quite different dependencies on “error terms” such as
the chemical shift parameters for the spin-pair nuclei. Further-
more they have different demands/limitations with respect to
sample spinning speed and RF field performance. To ensure
implementation of the recoupling experiment best suited for a
specific application, it may be quite useful to evaluate these
aspects numerically prior to the experimental work. To dem-
onstrate the feasibility of such comparative analysis, Fig. 6
gives a series of dipolar recoupling spectra using the DRAMA
(19), DRAWS (20), HORROR (23, 63), and C7 (25) pulse
sequences. We note that these pulse sequences, in full analogy
to their typical practical use, straightforwardly are imple-
mented in the SIMPSON input file as exchangeable pulse
sequence building blocks referring to the general pulse scheme
in Fig. 6a. This is accomplished by extensive use of global
parameters and the Tcl construct 1index ina foreach loop.
We note that most of these recoupling sequences rely on or are
dependent on finite RF pulse effects which accordingly are an
integral part in most of the simulations, as specified in the input
file in the Appendix. Furthermore, we should note that these
simulations were performed using the Zaremba, Conroy, and
Cheng et al. type of powder averaging with 232 pairs of oz,
Bcr angles. This averaging scheme is extremely efficient in
cases where the tensors are axially symmetric around the rotor
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FIG. 6. Numerical simulations of various homonuclear dipolar recoupling
experiments operating on a powder of “C—"C spin pairs characterized by a
dipolar coupling of bo/2m = —2 kHz under the conditions of MAS with
/27 = 5 kHz. (a) Generalized pulse sequence which for the simulations
assumes ideal 'H to "C cross polarization and 'H decoupling as well as ideal
BC 7/2 bracketing pulses (hatched rectangles). The simulations correspond to
(b) DRAMA (ideal, 0, 0), (c) DRAWS (8, 0, 0), (d) HORROR (1/2, 0, 0), and
(e) C7 (7, /2, —w/2) with the parenthesis giving wer/27r in multiples of w /27
(infinitely strong pulses are indicated ideal) as well as the flip-angle 6 and
phase ¢ for the bracketing pulses.

axis, but less efficient than REPULSION and Lebedev for all
other orientations,

Example 3: Heteronuclear Dipolar Recoupling Using
TEDOR

In the previous section we presented REDOR (/8) as a
typical example of heteronuclear dipolar recoupling under
MAS conditions. Obviously several alternatives exist,
among which belong the transfered-echo-double-resonance
(TEDOR) experiment (64, 65) which here serves as another
example illustrating the straightforward consideration of
finite RF pulse irradiation in complex echo-train experi-
ments in combination with extended reuse of propagators in
two dipolar dephasing periods. The attractive feature of
TEDOR compared to REDOR is the elimination of back-
ground signals due to uncoupled spins. This facilitates the
precise measurement of the heteronuclear dipole—dipole
coupling and thereby the long-range internuclear distance,
e.g., between "N and "C spins in peptides or proteins. The
TEDOR pulse sequence (Fig. 7a) consists of two periods of
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FIG. 7. Simulated TEDOR spectra for the *C—"N spin pairs in a powder
of L-asparagine obtained using the pulse sequence in (a) with rotor synchro-
nized sampling, w,/27 = 3.2 kHz, wg:/27 = 150 kHz, and by/27 = 1230 Hz
(rex = 1.36 A). The calculations assumed ideal cross polarization and 'H
decoupling, a fixed rotor-synchronized duration of the preparation sequence
prior to the heteronuclear coherence transfer, and finite RF pulse conditions for
all pulses. (b) to (d) TEDOR spectra obtained by Fourier transformation of the
dipolar dephasing starting from the point with the maximum intensity with the
number of preparational rotor periods n being 1, 2, and 4, respectively, as
specified in the TEDOR.in input file in the Appendix. All FIDs are apodized
using 30-Hz Lorentzian linebroadening.

dipolar dephasing separated by a pair of 7/2 pulses which
establish the heteronuclear coherence transfer. The dipolar
dephasing periods contain a series of w refocusing
pulses applied synchronously with the rotor period to re-
cover the dipolar coupling interaction otherwise averaged
over a rotor period. Inspired by Fig. 9 in the paper of Hing
et al. (64), Figs. 7Tb—7d show a series of Fourier-transformed
TEDOR dephasing curves corresponding to the “C-"N
spin-pair in L-asparaginc. The corresponding Tcl input file is
given in the Appendix. We note that the Fourier transfor-
mation of the time-domain data is performed as postpro-
cessing by discarding the data points prior to the echo
maximum.
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Example 4: POST-C7 Heteronuclear Dipolar Recoupling:
Excitation Curve and 2D Parameter Scan

In the design and implementation of new pulse sequences, it
is desirable on the level of numerical simulations to be able to
scan the dependencies of the pulse sequence toward various
parameters of the internal and external Hamiltonian. This is
equivalent to the mandatory calibrations of external manipula-
tions always preceding experiments on the spectrometer. For
example, in setting up a dipolar recoupling experiment for
heteronuclear coherence transfer, it is relevant to know the
optimum excitation period for the actual spin system (depend-
ing on the internuclear distance, type of nuclei, etc.) and the
sensitivity of this transfer toward other parameters such as the
chemical shifts of the nuclei. In this manner, it should be
possible to avoid disappointments and hours of “blind” spec-
trometer optimization in cases where pulse techniques de-
signed for one application are transferred to a completely
different context with respect to the internal interactions.

As an example of looped parameters scans for pulse se-
quence optimization and applicability analysis, Fig. 8 investi-
gates °C to "N heteronuclear coherence transfer using a het-
eronuclear variant of the POST-C7 (26) pulse sequence as
visualized in Fig. 8a and represented by the SIMPSON input
file in the Appendix. With respect to the latter we should
address attention to the very simple construction of the quite
advanced POST-C7 pulse sequence in the pul seq section as
a super cycle which through looping concatenates the cycli-
cally phase-modified three-pulse building blocks as required to
produce the excitation curve given in Fig. 8b. In Fig. 8¢ we
exemplify 2D parameters scans by a 3D plot (2D contour plot),
giving the excitation efficiency along the vertical axis and the
dependencies on the *C and "N isotropic chemical shifts along
the horizontal axes. Such curves are highly relevant for deduc-
tion of the broadband nature of the recoupling pulse sequence
in the given application. For space reasons, the loops required
to produce this 2D scan are given in Ref. (55). We note that the
present simulations restrict to 8, powder averaging (40 angles
in the ber40 file) being justified by the y-z-encoding (23)
properties of C7 and the present ignorating effects from chem-
ical shielding anisotropy. Obviously, at the expense of longer
calculation times, it is straightforward to change the powder
averaging to cover the full semi-sphere by just entering another
file name.

Example 5: Heteronuclear Decoupling in Multiple-Spin
Systems Using CW and TPPM

In addition to recoupling techniques recovering parts of the
internal Hamiltonian being coherently averaged by MAS in an
attempt to obtain high-resolution spectra, decoupling of isotro-
pic or anisotropic J and dipolar coupling interactions repre-
sents another important element in tailoring the internal Ham-
iltonian to the desired shape. So far the prevailing method for
heteronuclear dipolar decoupling has been “brute-force” high-
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FIG. 8. Simulation of “C to "N coherence transfer for a powder of
BC-"*N spin pairs characterized by a dipolar coupling constant of bey/27 =
1.3 kHz (re = 1.33 A) using the heteronuclear variant of the POST-C7 pulse
sequence (a) with /271 = wge/147 = 8 kHz (both channels). The simulations
assumed ideal cross polarization, 'H decoupling, and /2 bracketing pulses. (b)
Excitation curve with the POST-C7 coherence transfer sampled in steps of two
rotor periods (27, = w,/m) under conditions of on-resonance RF irradiation on
the isotropic chemical shifts for both spins. (c) Transfer efficiency for the
POST-C7 pulse sequence using 7., = 127, as function of the isotropic
chemical shifts for the two spin species.

power continuous wave (CW) irradiation on the nonobserved
spin species (/—4, 6), although more efficient schemes such as
two-pulse phase modulation (TPPM) (31), phase alternated 27
pulse irradiation (66), frequency- and phase-modulated decou-
pling (FMPM) (67), off-resonance decoupling (68), and 12-
fold symmetric C12 decoupling sequences (69) have entered
the scene recently. The more advanced schemes have in par-
ticular proven advantageous in the case of fast sample spinning
where dipolar couplings between the protons become less
efficient and thereby less helpful in truncating second-order
cross-terms involving anisotropic chemical shielding on the
directly coupled proton spins (66, 69). Exactly this aspect
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explains why it is very demanding to decouple the influence
from the proton in a simple heteronuclear two-spin system
unless extremely high decoupling fields are applied. This ap-
plies in particular if the proton is influenced by anisotropic
shielding (66). Furthermore, it explains why combined hetero-
nuclear decoupling and homonuclear proton—proton dipolar
recoupling may improve this situation (69). To assist the ana-
lytical evaluation of such effects and investigate the specific
role of the heteronuclear spin systems, it appears to be desir-
able to have straightforward access to numerical simulations.
This may be accomplished by SIMPSON, as illustrated in Fig.
9 by a series of simulations illustrating the effect of CW and
TPPM decoupling for a heteronuclear four-spin system. For the
purpose of illustration we examine a methylene carbon which,
in addition to the directly bonded protons, is influenced by
heteronuclear dipolar coupling to a remote spin and indirectly

I . T L T T T ’. T T # T d T " 1

400 200 0 -200 Hz
FIG. 9. Simulations comparing CW and TPPM 'H decoupling for a °C
spin dipolar coupled to three mutually coupled protons which additionally are
influenced by anisotropic chemical shift. The spin system geometry is visual-
ized above the spectra while the dipolar coupling and chemical shift parame-
ters are given in the SIMPSON input file for this example included in the
Appendix. (a) Generalized pulse sequence which for the simulations assume
ideal CP and MAS with /27 = 5 kHz. (b—e) “C MAS spectra for a powder
sample subjected to (b, ¢) CW and (d, e) TPPM (180,5180 _,5 cycles) decou-
pling using decoupling RF field strengths of (b, d) 80 and (c, e) 160 kHz. We
note that the vertical scale for the CW spectra is expanded by a factor 2.5
relative to the TPPM spectra and that all FIDs are apodized using 10-Hz

Lorentzian linebroadening.
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influenced by a number of homonuclear '"H-'H dipolar cou-
plings and 'H chemical shift anisotropy. The geometry of the
spin system is illustrated by an insert above the decoupled *C
MAS spectra in Fig. 9 reflecting experiments using the simple
1D pulse sequence in Fig. 9a under the assumption of ideal
cross-polarization. Specifically, the simulations reflect a pow-
der sample subjected to MAS with w/27 = 5 kHz along with
CW or TPPM decoupling using 'H decoupling field strengths
of 80 and 160 kIlz. From the spectra it is evident that the CW
using the lowest RF field amplitude provides far from sufficient
decoupling of the protons. This situation is improved consid-
erably by increasing the CW RF field strength to 160 kHz and
even more so by applying TPPM decoupling which in the
present case used 6,0 _, cycles with 6 = 180° and ¢ = 25°. To
our knowledge this represents the first numerical simulations
comparing the decoupling performance of CW and TPPM
decoupling despite the fact that it has been extensively dem-
onstrated analytically and experimentally during the past cou-
ple of years. With specific attention to the input file, we note
that the simulations are most efficiently conducted using
v-COMPUTE which requires synchronization of the TPPM
irradiation, the sample spinning, and the sampling. To accom-
plish this the code automatically adjusts the desired spinning
frequency spin_want to the rotor-synchronized actual fre-
quency spin_rate, being informed to the user using the Tcl
puts command.

Example 6: SLF Experiments without and with MSHOT-3
and FSLG Homonuclear Decoupling

One of the most typical applications for homonuclear dipolar
decoupling pulse sequences is as an element in separated-local-
field experiments for measurement of heteronuclear dipolar
couplings (70). For example, this is of interest for determina-
tion of the orientation of N-H internuclear axes relative to the
external magnetic field in single crystals or uniaxially oriented
peptide samples, as described by Opella and co-workers (33).
In this sort of applications, where the line position is inter-
preted directly in terms of orientational angles, it is quite
important that the applied decoupling scheme provides reason-
able decoupling.

Such performance tests may conveniently be conducted
using SIMPSON as demonstrated in Fig. 10 by simulated
w,/2ar-dimension SLF spectra for a single crystal of a "N—
('H), three-spin system using the pulse sequence in Fig. 10a
without and with FSLG (29) and MSHOT-3 (30) homo-
nuclear decoupling. Using typical N-H internuclear dis-
tances (1.01 A) and the N-H vectors split by the tetrahedral
angle, this spin system is characterized by dipolar constants
of byu/27 = —26.7 kHz and bw/27 = 11.8 kHz which for
the given tensor geometry puts some demands on the homo-
nuclear decoupling. The influence from the homonuclear
coupling becomes immediately evident from the spectrum
without decoupling (Fig. 10b) which contains six reso-
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FIG. 10. Simulated w,/27 projections from 'H-N SLF experiments
using different homonuclear decoupling sequences for a single crystat (Q¢. =
{30°, 65°,0}) of a *N('H), three-spin system. The spin system is characterized
by b2 = —26.7 kHz, byu,/27 = bww/27 = 11.8 kHz, Q7" = {0,
35.2°, 0}, Q3 = {0, 0, 0}, and Q}F° = {0, 70.4°, 0}. (a) General pulse
sequence for the constant-time SLF experiment with the homonuclear decou-
pling sequence indicated by the hatched rectangle. (b—d) Spectra correspond-
ing to SLF (b) without homonuclear decoupling, (c) FSLG decoupling using
wre/27™ = 58 kHz, and (d) MSHOT-3 decoupling with wge/27 = 60 kHz all
calculated using we>™' /27 = — i**/27 = 500 Hz (no chemical shift anisot-
ropy). (b'—d’) The corresponding spectra calculated under the assumption of
identical isotropic chemical shifts for the protons.

nances, two weak lines at ca. =11.8 kHz (foldings at
+1455) and four lines belonging to the displayed spectral
window. Apart from the resonances at =2316 Hz this spec-
trum differs significantly from the spectrum without the
homonuclear coupling ideally showing four resonances at
+2316 and 3160 Hz for the given crystallite orientation.
As a first attempt to quench the influence from the homo-
nuclear coupling, Fig. 10c shows a spectrum using FSLG
decoupling with an RF field strength of 58 kHz. This spec-
trum shows a doublet and a quartet, which by its difference
to the expected two-doublet spectrum by itself indicates
inadequate decoupling. Also, the frequencies of the doublet
lines (— 1788 and — 1315 Hz) and obviously the quartet lines
(1260, 1435, 1657, and 1835 Hz) are shifted relative to the
theoretical values (+1824 and *1336 Hz). Clearly, such
distortions and frequency shifts are unfortunate provided
that information about the orientation of the internuclear
axes is extracted from the line positions. The MSHOT-3
spectrum (Fig. 10d) using a decoupling RF field strength of
60 kHz looks more promising, although characterized by a
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lower scaling factor (0.353 as opposed to 0.577 for FSLG),
in the sense that two doublets symmetrically disposed
around the center of the spectrum are obtained. The posi-
tions for the doublet lines (—968 and —765 Hz), however,
remain shifted relative to the theoretical values (—1117 and
—819 Hz). Obviously, this situation may be improved con-
siderably by increasing the decoupling RF field strength (not
shown). Furthermore, it is interesting to note that SLF pulse
sequences without decoupling and with FSLG decoupling
are quite sensitive to the chemical shifts of the protons. This
becomes evident by comparison of the two series of spectra
in Figs. 10b—10d and Figs. 10b’-10d" calculated under the
assumption of finite (=500 Hz) and vanishing isotropic 'H
chemical shifts, respectively. At the same time these spectra
reveal that MSHOT-3 is relatively insensitive to these ef-
fects, as discussed previously (30). Finally, we should em-
phasize that the spectra in Fig. 10, the appearance of which
highly depends on the selected tensor angles, the decoupling
RF field strength, and the orientation of the crystal, by no
means give a general evaluation of the different types of
decoupling sequences but rather serve to demonstrate the
relevance of numerical simulations to investigate and po-
tentially compensate for the effects of insufficient decou-

pling.

Example 7: Heteronuclear Cross-Polarization Employing
FSLG with Frequency Switching or Phase Modulation

In the past few years there has been an increasing interest in
exploiting advanced phase- and amplitude-modulated RF pulse
sequences as a flexible tool for manipulation of the internal
Hamiltonian. For example, such schemes have been proposed
for hetero- (67) and homonuclear (71, 72) decoupling, cross
polarization (73), dipolar recoupling (74, 75), and multiple-
quantum MAS (MQ-MAS) refocusing of second-order quadru-
polar line broadening (76, 77). Obviously, the ability to create
continuous phase and amplitude modulation increases the de-
grees of freedom in experiment design but it also extends the
need for numerical simulations to accurately analyze the per-
formance of the pulse sequences under ideal and nonideal
conditions. For example, continuous RF modulation is often
implemented as discrete steps on the spectrometers which
inevitably calls for the question: how fine is the digitalization
needed to meet the continuous condition with sufficient accu-
racy? Often, this question can only be answered by experimen-
tal tests or numerical simulations.

To demonstrate that SIMPSON allows handling of advanced
time-modulated pulse sequences using simple loop constructs,
Fig. 11 shows a series of excitation curves for 'H to “N
coherence transfer using a spin-exchange at the magic angle
(SEMA) type of pulse sequences with FSLG irradiation at the
'H channel along with a phase-alternated pulse sequence on the
“N channel (33, 79). Prior to FSLG the 'H magnetization is
prepared along an axis parallel to the effective field direction of
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FIG. 11. Simulations of 'H to "N coherence transfer for a static powder
of typical amide 'H~"N spin systems (byy/27 = 11.8 kHz, 8}, = 100 ppm,
nes = 0.5, 8, = 100 ppm, n¢s = 0.5) using a SEMA-type cross-polarization
pulse sequence with FSLG irradiation on the "H channel and phase inversion
on the N channel according to the pulse sequence in (a). The pulse sequence
uses 6 = 54.74° along with wh/2m = V2/3 oi/27 = — V2 wu/27 = 60
kHz for the simulations in (b). w./27 denotes the frequency offsets used for
the conventional FSLG sequence. (b) SEMA CP excitation curves for se-
quences using conventional frequency switching (solid line) as well as phase
modulations with different phase steps (208° divided into 8, 13, 16, 26, 52,
104, and 208 steps) (dashed lines).

the Lee—Goldburg (LG) sequence using a 'H preparation pulse
with flip angle 54.74° and phase x. The basic pulse sequence is
shown in Fig. 11a. The FSLG element of this pulse sequence
can be executed either directly using frequency (i.e., offset)
switching as originally proposed by Bielecki et al. (29) or
using phase modulation as recently discussed by Vinogradov et
al. (71) and Gan (72). Both approaches have been implemented
in the SIMPSON input file for this example in the Appendix.
Thus, in addition to an excitation curve produced using SEMA
CP with conventional frequency switching, Fig. 11b shows
excitation curves for various phase-modulated realizations of
the experiment using 8, 31, 16, 26, 52, 104, and 208 steps in the
208° phase sweeps. By comparison, these curves allow for
strict evaluation of the effect of discretization of the continuous
phase modulation. It appears that a fairly good reproducibility
of the frequency-switched experiments is achieved even using
phase steps as large as 26°, which timing-wise definitely are
less demanding to implement on the spectrometer than the
more real continuous-phase sweep. We note that for the se-
lected 'H-"N two-spin system, characterized by dipolar cou-
pling and chemical shift parameters typical for amide NH spin
systems in peptides and experimental conditions corresponding
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to a 400 MHz spectrometer, the transfer efficiency for a static
powder sample is about 0.57. Finally, we should note that
FSLG implemented either in the conventional frequency-
switching way or by phase modulation represents a very useful
building block in a number of multidimensional solid-state
NMR correlation experiments including, e.g., heteronuclear
chemical shift correlation (78) and heteronuclear chemical shift
versus dipolar coupling correlation, among which the latter is
addressed in the following example.

Example 8: 2D 'H-"N PISEMA SLF Experiment

Obviously, SIMPSON simulations are not by any means
restricted to one-dimensional spectra or parameter scans.
They may equally well be applied to simulate multidimen-
sional solid-state NMR spectra, as demonstrated in the next
couple of examples. The first example is a simulation of a
"N chemical shift versus 'H-'"°N dipolar coupling correlated
spectrum obtained using the PISEMA (33, 80, 81) pulse
sequence in Fig. 12a. The parameters for the simulated
spectrum shown in Fig. 12b are chosen to match a typical
amide spin-pair in a peptide. According to the pulse se-
quence in Fig. 12a and assuming ideal cross-polarization,
the 'H part of the initial —7,, ("H) and I,, (*N) coherence
is tilted to a “magic angle” orientation where it is spin
locked by a LG sequence while the '’N coherence is spin
locked by CW irradiation in full analogy to the pulse se-
quence described in the previous example. The full 2D
scheme is readily implemented in SIMPSON (see Appen-
dix) by sampling of the normal 7,-dimension FID for each of
the £, values incremented in steps of the FSLG block using
a conventional loop construction. We note in passing that
the PISEMA experiment may be considered a powerful
alternative to the conventional SLF experiment in the sense
that it typically provides a significantly better resolution and
has a better dipolar scaling factor (0.83) than typical SLF
experiments using homonuclear multiple-pulse decoupling
(0.30-0.58). These features have rendered PISEMA a pop-
ular building block in various 2D and 3D experiments for
heteronuclear coherence transfer and chemical shift evolu-
tion while simultaneously suppressing the dominant homo-
nuclear dipole—dipole couplings among the abundant proton
spins (72, 79-82).

Example 9: 2D "C, C Chemical-Shift Correlation in a
Five-Spin-1/2 System Using RFDR Dipolar Recoupling

The second example of a 2D SIMPSON simulation ad-
dresses homonuclear “C chemical shift correlation for a
five-spin system using a radiofrequency-driven dipolar re-
coupling (RFDR) (217) pulse sequence in the mixing period
of a 2D MAS experiment. RFDR represents a frequently
used dipolar recoupling experiment, which as a disadvan-
tage is not y-encoded such as the HORROR (23) and C7
(25, 26) class of recoupling experiments, but benefits from
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FIG. 12. 2D "N chemical shift versus 'H-"’N dipolar coupling correlated
spectrum (b) calculated for a static powder of typical amide 'H-"°N spin pairs
using the 2D PISEMA separated-local-field pulse sequence in (a) with Larmor
frequencies corresponding to a 400-MHz spectrometer. The spin pair is char-
acterized by the parameters (nonzero values only) by/27 = 10 kHz, 8}, = 100
ppm, &y = 100 ppm, and m&s = 0.25 while the pulse sequence used
wh/2r = V23 oy2m = — V2 wg/2m = 83 kHz for the SEMA part and
whe/27 = 130 kHz decoupling. The 2D spectrum was sampled using 128
points in both dimensions.

an attractive experimental robustness and forgiveness with
respect to isotropic and anisotropic chemical shifts (unless
the isotropic shift differences for the involved spin pairs are
very small). These features have rendered the 2D RFDR
pulse sequence shown in Fig. 13a quite popular for obtain-
ing 2D "C, "C chemical shift correlated spectra for biolog-
ical macromolecules in the solid phase (83, §4). In the
present example we employ SIMPSON to simulate the 2D
correlation spectrum for five-dipolar-coupled “C nuclei ar-
ranged in a “zigzag” coordination as illustrated in Fig. 13b
and each exhibiting typical values for the anisotropic chem-
ical shifts. For clarity of the illustration we have arbitrarily
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FIG. 13. Simulation of a 2D "C, “C chemical shift correlated spectrum
(c) for a dipolar coupled five-spin system of “C nuclei (b) obtained using the
2D pulse sequence in (a) with dipolar mixing based on the RFDR recoupling
sequence with XY-8 phase alternation (60). The pulse sequence assumed ideal
RF pulses (including CP and 'H decoupling) and a sample spinning speed of
w,/27 = 20 kHz. Details on the spin system and pulse sequence parameters are
given in the input file in the Appendix.

assumed a 40-ppm isotropic chemical shift difference be-
tween neighboring spins. Using this setup (specified in more
detail in the SIMPSON input file in the Appendix) and a
mixing period of 2.4 ms, allowing magnetization to be
transferred over distances corresponding at least to three
bonds, we obtain the simulated 2D correlation spectrum
shown in Fig. 13c. Simulation of this five-spin 2D MAS
powder spectrum, using 30 pairs of a g, Ber angles, 5 v
angles, and 32 ¢, increments, required approximately 6 h of
CPU time on a standard PC 450-MHz Pentium III processor.
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Example 10: Sensitivity-Enhanced Quadrupolar-Echo NMR:
The QCPMG-MAS Experiment

The last two examples serve to demonstrate that SIMPSON,
obviously, may also be used for simulation of multiple-pulse
solid-state NMR experiments involving quadrupolar nuclei.
The first example addresses the application of the quadrupolar
Carr—Purcell-Meiboom—Gill (QCPMG) (85, 86) pulse se-
quence in combination with MAS to improve the sensitivity of
quadrupolar-echo spectra for half-integer quadrupolar nuclei
(34). Calculation of QCPMG-MAS NMR experiments based
on the pulse sequence in Fig. 14a may be numerically very
demanding when taking into account the quite large quadru-
polar coupling interaction calling for extensive powder aver-
aging, the potential for large matrix dimensions, and the need
for consideration of finite RF pulse effects throughout a train of
RF pulses applied under fast sample spinning conditions. Typ-
ically, and in particular for quadrupolar nuclei with large /-spin
quantum numbers, this invites custom-made software heavily
optimized for the specific problem in mind as described pre-
viously (34, 87). Nonetheless, although at the expense of
slightly longer calculation times (less than a factor of 2), such
simulations may also be conducted within the flexible simula-
tion environment offered by SIMPSON. This is illustrated in
Fig. 14b by simulation of a typical QCPMG-MAS spectrum for
a powder of spin / = 3/2 nuclei characterized by a large
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FIG. 14. (a) QCPMG-MAS pulse sequence for sensitivity-enhanced qua-

drupolar-echo spectroscopy of half-integer quadrupolar nuclei. (b) Simulated
QCPMG-MAS spectrum for a powder of / = 3/2 nuclei characterized by
Cy = 10 MHz, nq = 0.12 Q3. = {0, 0, 0}, 8,40 = — 150 ppm, nes = 0.60,
and Q52 = {90°, 30°, 90°}. The pulse sequence used M = 30, 7, = 103.25
us, T = 104.45 us, 73 = 2232 us, 7, = 1 ms, Ny, = 5, a dwell time of 4
us, /27 = 9.5 kHz, wye/27 = 64.1 kHz, and wy/27 = — 130 MHz. For more
details we refer to the input file in the Appendix.
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quadrupolar coupling interaction tensor (Co = 10 MHz) and a
differently oriented anisotropic chemical shift tensor along
with experimental conditions using /27 = 9.5 kHz, wgs/
27 = 64.1 kHz, and w,/2m = —130 MHz, We note that the
finite RF pulses for the echo train (cf. Appendix) were calcu-
lated using the approximative replication scheme described in
Ref, (34) and that the spin-echo sideband intensities were
integrated to form the stick-plot shown in Fig. 14b. The latter
was accomplished using the £ssbint integration command
in the main section of the input file. We note that the “stick-
plot” representation is useful for numerical evaluation and
iterative fitting toward experimental spin-echo sideband inten-
sities to obtain information about the magnitude and relative
orientation of quadrupolar coupling and anisotropic chemical
shift tensors.

Example 11: MQO-MAS NMR of Half-Integer Quadrupolar
Nuclei

As a final example, also addressing quadrupolar nuclei, we
consider the MQ-MAS experiment which recently has found
widespread application as a tool to obtain high-resolution spec-
tra for half-integer quadrupolar nuclei (35). This experiment
relies on combined evolution under triple- (in the case of spin
I = 3/2 nuclei) and single-quantum coherence, implying that
the success of the experiment heavily relies on the ability to
perform efficient transformations between these states. The
transfer efficiency for a specific application has a complicated
dependence on the quadrupolar coupling constant, the avail-
able RF field strength, and the sample spinning frequency.
Thus, it is of interest to optimize the experiment for given
combinations of RF field strengths and quadrupolar coupling
constants. This is conveniently accomplished numerically as
demonstrated in Fig. 15 by simulated curves for the efficiency
of single-pulse excitation of triple-quantum coherence for a
powder of spin / = 3/2 nuclei as function of the excitation
pulse length for the two-pulse sequence (88) in Fig. 15a using
wgr/2 = 80 kHz and different quadrupolar coupling constants
(Fig. 15b). The curves were calculated using the matrix set
and filter commands to accomplish detection only through
the triple-quantum transitions.

CONCLUSION

In conclusion, we have presented a new and powerful software
package for fast simulation of essentially all solid-state NMR
experiments. The package, consisting of the simulation tool
SIMPSON along with supplementary programs for processing
and visualization, allows easy and flexible implementation of
advanced multiple-pulse experiments at a level of abstraction
closely resembling the operation of a modern solid-state NMR
spectrometer. Thus, acting as a “computer spectrometer,” it is
foreseen that SIMPSON will form an important platform for spin
engineers systematically constructing and evaluating new pulse
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FIG. 15. (a) 2D pulse sequence for MQ-MAS NMR of half-integer
quadrupolar nuclei. (b) Triple-quantum excitation curve calculated as a func-
tion of the pulse length P using wg/27 = 80 kHz for various values of C,

(M = 0).

techniques as well as for the solid-state NMR spectroscopists
using SIMPSON along with its iterative fitting procedures to
extract structural parameters from solid-state NMR spectra result-
ing from more or less advanced experimental methods.

APPENDIX

A: SIMPSON Input Files for the Example Simulations

Example 1: Rotational Resonance Type Spectra for Bcle
Spin Pairs

spinsys |
channels 13C
nuclei 13C 13C
shift 1 0 6000 1 0 0 O
shift 2 0 6000 0 0 O O

dipole 1 2 -1500 0 0 O
}
par |
method gcompute
spin_rate 2000
gamma_angles 20
sw spin_rate*gamma angles
np 4096
crystal_file rep320

start_operator Inx

detect_operator Inp
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proc pulseq {1} {
maxdt 5.0
delay leb

}

proc main {1} {

global par

for {set iso 0} {$iso <= 4000} {incr iso 1000}

set f [fsimpson [list [list \
shift_2_iso $isoll]
faddlb $f 50 O

Efu SfF
fsave $f $par(name)-$iso.spe
funload $f

Example 2: Homonuclear Dipolar Recoupling Using

DRAMA, DRAWS, HORROR, and C7

spinsys {
channels 13C
nuclei 13C 13C
dipole 1 2 -2000 0 0 O

par {
spin_rate 5000
SW spin_rate
np 256
crystal_file zcw232

}

proc pulseq {} |
global par

maxdt 1.0

set nprop 1

if {$par(type) == “drama”} {
set tr4 [expr 0.25e6/$8par(spin_rate)]
set tr2 [expr 0.5e6/$par(spin_rate)]
reset
delay Stra
pulseid 1 250000 x
delay $tr2
pulseid 1 250000 -x
delay S$tra

store 1

} elseif {$par(type) == “draws”} {
set rf [expr 8%$par(spin_rate)]
set t360 [expr 1.0e6/8rf]

reset

pulse $t360 $rf y

pulse $t360 $rf -y

pulseid 1 250000 x

pulse $t360 $rf y
pulse $t360 $rf -y
pulse $t360 $rf -y
pulse $t360 $rf y
pulseid 1 250000 x
pulse $t360 $rf -y
pulse $t360 $rf y

store 1

) elseif ($par(type) ==

“horror”} {

set tsw [expr 1.0e6/$par(sw)]

set rf [expr $par(spin_rate)/2.0]

reset
pulse $tsw Srf x

store 1

] elseif (S$Spar(type) == “c7”} {

set nprop 2

set rf [expr 7*Spar(spin_rate)]
set t360 [expr 1.0e6/Srf]

reset

pulse [expr 2%$t360] $rf [expr 360/7.0%0

pulse [expr 2%3t360] S$rf [expr 360/7.0%2

1
pulse [expr 2#$t360] $rf [expr 360/7.0%1)
J
]

pulse [expr 1%#8t360] $rf [expr 360/7.0%3

store 1

reset [expr 7#$t360

pulse [expr 2x$t360

$rf [expr 360/7.0%4]

]

pulse [expr 1*3t360] $rf [expr 360/7.0%3]
1
]

pulse [expr 2%*$t360

$rf [expr 360/7.0%5]

pulse [expr 2*$t360] $rf [expr 360/7.0%6]

store 2

reset

acq

for {set i 1} {81 < $par(np)} {incr i} {

prop [expr (($i-1) % $nprop)+1]

acq

}

proc main {} {

global par

foreach p {{drama 100 x}

{draws 100 x}

{horror 1 x} {c¢7 1 2}} {

set par{type)
set par(gamma_angles)

set par(start_operator)

gset par(detect_operator) Spar(start_operator)

set f [fsimpson]
faddlb $f 50 0
fzerofill $f 8192
e ST

[lindex $p 0]
[lindex $p 1]
In[lindex $p 2]
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fsave $f S$par(name) -$par(type).spe -binary
funload $f

Example 3: Heteronuclear Dipolar Recoupling Using

TEDOR

spinsys |

channels 15N 13C
nuclei 15N 13C
dipole 1 2 1230 0 0 O

par {
spin_rate 3200
sw spin_rate
np 64
crystal_file zcw376
gamma_angles 100

}

start_operator Ilx
detect_operator I2p
150000

variable n g

variable rf

proc pulseq (} |

global par
maxdt 1.0

$par (rf)
[expr 1.0e6/$par(spin_rate)]

set rf
set tr
set t90 f[expr 0.25e6/$rf]
set t180 [expr 2.0%8t90]

reset

delay [expr $tr/4.0-$t180/2.0]
pulse $t180 0 x $rf x

delay [expr $tr/2.0-$t180]
pulse $t180 0 x $rf x

delay [expr $tr/4.0-$t180/2.0]
store 1

reset $t90

delay expr $tr/4.0-$t180/2.0]
pulse $t180 $rf x 0 x

delay [expr $tr/2.0-$t180]
pulse $t180 Srf x 0 x

delay [expr $tr/4.0-$t180/2.0]
store 2

reset

prop 1 $par(n)

pulse $t90 $rf x $rf x
acq $par(np) 2

proc main {} {

global par

fsave [fsimpson] S$par(name).fid
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Example 4: POST-C7 Heteronuclear Dipolar Recoupling:

Excitation Curve

spinsys {
channels 13C 15N
nuclei 13C 15N
dipole 1 2 1300 0 0 O
}

par {
spin_rate 8000
sw spin_rate/2.0
np 64
crystal_file ber40
gamma_angles 40

start_operator Ilz
detect_operator -I2z
}

proc pulseq (1} {
global par

maxdt 3.0

set rf [expr 7.0%$par(spin_rate)]
set t90 [expr 0.25e6/$rf]

for {set i 0} (8i < 7} {incr i} {
set ph [expr $i%360.0/7.0]
pulse $t90 $rf $ph $rf $ph
pulse [expr 4.0%St90] Srf \
[expr $ph+180] $rf [expr $ph+180]
pulse [expr 3.0%5t90] $rf $ph Srf $ph
}
store 1
acq $par(np) 1
}

proc main {} {
global par

fsave [fsimpson] $par(name).fid

Example 5: Heteronuclear Decoupling in Multiple-Spin

Systems Using CW and TPPM

spinsys
channels 1H 13C
nuclei 13C 1H 1H 1H

shift 2 0 2000 O 0.0 00
shift 3 200 2000 O 109.5 0 O
shift 4 500 2000 0 -100.9 0 O
dipole 1 2 -23300 O 0.0 0
dipole 1 3 -23300 0 109.5 0
dipole 1 4 3040 0 -101.0 O
dipole 2 3 -21300 0 144.7 0
dipole 2 4 -6900 0 -125.3 0
dipole 3 &4 ~-3880 0 -91.0 0
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par {
method gcompute
np 8100
crystal file repl68
gamma_angles 16
start _operator P
detect_operator Ilp
variable rf 160000
variable flip 180
variable tp 1.0e6*flip/ (r£%360.0)
variable spin_want 5000

round (0.5e6/ (tp*spin_want))
(n-1)/gamma_angles+1
0.5e6/(cycle*tp)
sw/gamma_angles

variable n
variable cycle
sw
spin_rate

}

proc pulseq {1} {

global par

maxdt 1

for {set i 1}
pulse Spar(tp) $par(rf)
pulse Spar(tp) S$par(rf)

{$i <= $par(cycle)) f{incr i}
$par(ph) 0 O
-$par(ph) 0 O

}
}

proc main {} |

global par
puts “Actual spin_rate = $par(spin_rate) Hz”
foreach p {{cw 0} {tppm 25} {

set type [lindex $p 0]

set par(ph) [lindex S$Sp 1]

set f [fsimpson]
faddlb $f 10 ©
fzerofill $f 32768

fft $f
fsave $f $par(name) -Stype.spe
funload $f

Example 6: SLF Experiments without and with MSHOT-3
and FSLG Homonuclear Decoupling
spinsys f

channels 1H 15N
nuclei 1H 1H 15N

dipole 1 2 -26700 0 35.2 0
dipole 1 3 11800 0 O 0
dipole 2 3 11800 0 70.4 0
shift 1 500 0 0 0 0 O
shift 2 -500 0 0 0 O O

}

par {
spin_rate 0
np 1024
crystal_file alpha30beta65
gamma_angles 1
start_operator I3x
detect_operator I3p
rotor_angle 0
variable tau 10500

va
va
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riable rf
riable rfdec

60000
150000

variable mshot_fac 10.125

SwW

}

proc
gl

pulseq {} {
obal par

rf/mshot_fac

set tsw [expr 1.0e6/S$par(sw)]

uli

{Spar (type)
set rf 0
reset
delay Stsw
store 1

elseif (S$par(type)
[expr 1.0e6%sqrt(2.0/3.0)/$par(rf)]
[expr round ($tsw/$tp/2.0)]
set n 1 }

[expr $tsw/$n/2.0]
[expr 1.0e6%*sqrt(2.0/3.0)/%tp]

set tp
set n
if ($n == 0}
set tp
set rf
set off [expr
reset

{

“none”} {

“fslg”)

-Srf*sqrt(0.5)]

for {set i 1} ($i <= $n} f{incr i} f
offset Soff 0
pulse $tp Srf y 0 O
offset [expr -Soff] O
pulse $tp $rf -y 0 0
offset 0 0
}
store 1
) elseif {$par(type) == “mshot”} {
set rf S$par(rf)
set tp [expr $tsw/40.5]
set td [expr 1.75%8tp]
set tp4 [expr 4.0%Stp]
for {set i 1} {$i <= 3} {incr i} {
set ph [expr 120%($i-1)]
delay $td
pulse $tp $rf [expr ( 90+8ph) % 360]
pulse $tpa $rf [expr ( 0+S$ph) % 360]
pulse $tp4 Srf [expr (180+Sph) % 360]
pulse $tp Srf [expr (270+S$Sph) % 360]
delay $td
1
store 1
}
puts “rf for S$par(type) = $rf Hz"
for {set tl 1} {$tl <= $par(np)} {incr t1}
reset
if {8tl1 > 1} |
prop 4
prop 1
}
store 4

set tdec [expr $par(tau)-Stswx(Stl-1.0)]
pulse Stdec $par(rfdec) 0 0 O
pulseid 2 0 0 250e3 0

pulse $par(tau) S$par(rfdec) 0 0 O

acq

o O O O

{

(ool
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proc main {} {

Example 7: Heteronuclear Cross-Polarization Employing
FSLG with Frequency Switching or Phase Modulation

global par

“

puts “sw = S$par(sw) Hz”
foreach par{type) {none fslg mshot]) f{
set f [fsimpson]
faddlb $f 50 0
fzerofill $f 32768
fRE ST

fsave $f $par(name)-$par(type).spe -binary

funload $f

spinsys |

}

channels 1H 15N
nuclei 1H 15N

par |

}

dipole 1 2 11800 0 0 O
shift 1 0 10p 0.5 0 0 O
shift 2 0 100p 0.5 0 0 0O
spin_rate 0

np 212
crystal_file repl68

proton_frequency 400e6

start_operator Ilz

detect_operator I2p

variable rf 60000

sw rf*sqrt(3.0/2.0)/2.0
variable theta 54.7356103172

proc pulseq {1} {

global par

set rf2 [expr sqrt(3.0/2.0)*$par(rf)]
set off [expr -sqrt(1.0/2.0)*S$par(rf)]
reset
if {$par(steps) == “offset”} |
set tp [expr 1.0eb*sqrt(2.0/3.0)/$par(rf)]
offset $off 0
pulse $tp Spar(rf) y $rf2 x
offset [expr -$off] 0
pulse $tp $par(rf) -y S$rf2 -x
offset 0 0

} else {
set step [expr 208/S$par(steps)]
set dmf [expr sqrt(3.0/2.0)% \
$par(steps)*$par(rf)]
set tp [expr 1.0e6/Sdmf]
for {set ph S$step) \
{$ph <= 208} {incr ph $step} |
pulse $tp Spar(rf) \
[expr (90+$ph) % 360] $rf2 X
}
for {set ph [expr 388-S$stepl} \
{$ph >= 180} {incr ph -S$step} |
pulse S$tp $par(rf) \
[expr (90+$ph) % 360] S$rf2 -X

}
store 1

reset
pulse [expr S$par(theta)/90.0% \
0.25e6/3par(rf)] $par(rf) x 0 x
acq Spar(np) 1 -x
1

proc main {1} {
global par

foreach par(steps) {offset 8 13 16 26 \
52 104 2081 {
set £ [fsimpson]
fsave $f $par(name) -$Spar(steps) .fid
funload $f

Example 8: 2D 'H-"N PISEMA SLF Experiment

spinsys {

channels 1H 15N

nuclei 1H 15N

dipole 1 2 10000 0 0 O

shift 2 100p 100p 0.25 0 17 0
}

par {
spin_rate 0
crystal file zcw4180
start_operator I2x-11ly

detect_operator I2p
proton_frequency 400e6

verbose 1101

np 128

ol 128

variable rf 83000

variable dec 130000

sw 40000

swl r£/2.0/8qrt(2.0/3.0)

variable theta 90-54.73561032

}

proc pulseq {} {
global par

set tsw [expr le6/$par(sw)]
set tp [expr leb*sqrt(2.0/3.0)/$par(rf)]

set tth [expr le6*Spar(theta)/360/$par(rf)]

set off [expr -sqrt(0.5)#*Spar(rf)]
set rf2 [expr sqrt(l.5)*8par(cf)]

reset

offset Soff O

pulse $tp Spar(rf) y $rf2 x
offset [expr -$off] 0

pulse $tp $par(rf) -y $rf2 -x
offset 0 O

store 1

reset
pulse S$tsw Spar(dec) x 0 x
store 2

for {set 1 1} ($i <= S$par(ni)} {incr i} {
resgt

325
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def {18 == 1

pulse $tth S$par(rf)

) else f
pPrep 13
phLaP:
}
store 3
acq Spar(np) 2

}

proc main {} {
global par

set f [fsimpson]

-x 0 =

fsave $f Spar(name).fid -binary
fzerofill $f 512 512
faddlb $f 300 1 300 1

fft $f 0 0 0 O

fsave $f $par(name).spe -binary
fplot2d $f $par(name).ppm -ppm
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Example 9: 2D "C, "C Chemical-Shifi Correlation in a
Five-Spin-1/2 System Using RFDR Dipolar Recoupling

spinsys f
channels 13C

nuclei 13C 13C 13C

shift 1 -80p 30p
shift 2 -40p 20p
shift 3 Op 40p
shift 4 40p 30p
shift 5 80p 20p
dipole 1 2 -2250
dipole 2 3 -2250
dipole 3 4 -2250
dipole 4 5 -2250
dipole 1 3 -530
dipole 2 4 -530
dipole 3 5 -530
dipole 1 4 -148
dipole 2 5 148

}

par {

spin_rate
proton_frequency
crystal_file
gamma_angles
start_operator
detect_operator
ni
np
sw
swl
variable n
verbose

}

proc pulseq {1} {
global par

mxdt 1.0

set tr
set tr2

13C 13C
10 -50
80 20

1L 10
2

.7 -80 120

4

5

30
-40
=30
-90

10 50

60 -40
0
752
0
72
36
36
36
22
50

[=NelNeNeNoNoNoNeReNeNeoRe NeNel
o

(el elNeNeNeoNeoNeNeol

20000
400e6
rep30

5

Inz

Inp

64

32
spin_rate
spin_rate
6

1101

[expr 1.0e6/$par(spin_rate)]
[expr $tr/2.0]

}

reset

delay $tr2
pulseid 2 250000
delay $tr2

store 1

%

reset

delay $tr2

pulseid 2 250000 y
delay $tr2

store 2

reset

foreach 1 {1 2 1
prop $i

}

store 8

reset

pulseid 1 250000 x
prop 8 S$par(n)
pulseid 1 250000 -y
store 8

reset

2021 2 1} {

delay [expr 1.0e6/$par(sw)]

store 6

{set i 0}
reset
if {$i > 0} |
prop 1
prop 6
}
store 1

for

foreach ph {x -y}

reset

{$1 < $par(ni)}

{incr i 2}

(

pulseid 1 250000 $ph

prop 1
prop 8
acq Spar(np) 6

proc main {} {

Example 10: Sensitivity-Enhanced Quadrupolar-Echo NMR:

global par

set f [fsimpson]

fsave $f $par(name).fid -binary

fzerofill §f 512 512
faddlb $f 20 0 20 0
£ffe $F @ 0 0.0

-phsens

phsens

fplot2d $f S$par(name).ppm -ppm

fsave $f S$Spar(name).

spe -binary

The QCPMG-MAS Experiment

spinsys |

channels 87Rb
nuclei 87Rb

shift 1 0
quadrupole 1 2 10e6

-150p 0.60 90 30 90

0.12 000

1
3
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par {
spin_rate 9506
sw 26*spin_rate
crystal_file zcw4180
gamma_angles 20
start_operator Ilz

detect_operator Ilc
proton_frequency 400e6

verbose 1101
variable rf 64102.6
variable n 124
variable r 30

variable nsync 5
variable t2add 1.20

np 2%n*(1+r)+n
variable n2 2%n

variable tsw 1.0e6/sw
variable tr 1.0e6/spin_rate
variable nprop round (tr/tsw)
variable t90 0.25e6/rf/2.0
variable t180 0.5e6/rf/2.0
variable tl tr-t90

variable t2 tl+t2add
variable ta 2.0%n*tsw
variable t3 (2*nsync*tr-ta-t180)/2.0

1

proc pulseq {1} (
global par

maxdt 0.4
matrix set 1 coherence {1 -1}

pulse S$Spar(t90) S$par(rf) x
filter 1

delay $par(tl)

pulse $par(tl180) Spar(rf) y
filter 1

delay S$par(t2)

for {set n 1} {$n <= $par(n)} {incr n} |
acq
if [expr $n > S$par(nprop)]
prop [expr (($n-1) % $par(nprop))+1]
} else {
delay Spar(tsw)
store $n

}

delay S$par(t3)

pulse $par(t180) S$par(rf) y
filter 1

delay S$par(t3)

for {set n 1} {$n <= $par(n2)} {incr n} |
acq
if [expr $n > S$par(nprop)] |
prop [expr (($n-1) % $par(nprop))+1]
} else |
delay S$par(tsw)
store $n

proc main {} {
global par

set f [fsimpson]

for {set i 1} {$i <= $par(n2)}! {incr i} {
set ¢ [findex $f [expr $i + $par(n)]]
set re [lindex $c 0]
set im [lindex $c 1]
for {set j 1} {$j <= $par(r)} (incr j} {
fsetindex S$f \
[expr $i+8ji*S$par(n2)+S$par(n)] S$re S$im

)

fsave $f $par(name).fid

fzerofill $f 32768

faddlb $f 20 0

fft $f

fphase $f -rp 90

fsave $f $par(name).spe -binary

fsave [fssbint $f 1000 0 1000] $par(name)-int.spe
}

Example 11: MQ-MAS NMR of Half-Integer Quadrupolar
Nuclei

spinsys |

channels 23Na

nuclei 23Na

quadrupole 1 2 1.2e6 0.6 0 0 0O
}

par {
spin_rate 8000
variable tsw 0.5
sw 1.0e6/tsw
np 81
crystal_file rep320
gamma_angles 20
start_operator Ilz

proton_frequency 400e6
variable rf 80000
}

proc pulseq {} {
global par

maxdt 0.5

matrix set detect coherence {-3!
acq
for {set i 1} {$i < $par(np)} {incr i) {
pulse $par(tsw) S$par(rf) -y
acq
}
}

proc main {} |
global par

fsave [fsimpson] $par(name).fid
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